首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Exoantigens of Trypanosoma cruzi were produced in experimentally infected BALB/c mice. The exoantigens were detected by the counterimmunoelectrophoresis method (CIE), with antisera raised in rabbits by immunization with total homogenates of culture forms of ***T. cruzi in plasma from ***field animals obtained by centrifugation and filtration. Control experiments indicated that exoantigens are not somatic components of T. cruzi leaked during the preparative procedure. Exoantigens were detected in male and female mice, 11-90 days old, between 6 and 60 days of infection, and in all mice with patent parasitemia. After 13 days of infection, mice developed antibodies to exoantigens; by CIE up to three populations of antibodies were revealed in different groups of animals. In mice between 13 and 60 days of infection, the coexistence of exoantigens and homologous antibodies was also observed. The exoantigens are not strain specific since a cross reactivity between antigens from three strains of T. cruzi (Tulahuén, Higueras, and Alejandro) was seen. Finally, the presence of antibodies to exoantigens in humans with chronic Chagas’ disease was demonstrated.  相似文献   

2.
Trypanosoma cruzi induces inflammatory reactions in several tissues. The production of prostaglandin F2alpha, 6-keto-prostaglandin F1alpha and thromboxane B2, known to regulate the immune response and to participate in inflammatory reactions, was studied in mice experimentally infected with T. cruzi. The generation of nitric oxide (NO), which could be regulated by cyclooxygenase metabolites, was also evaluated. In the acute infection the extension of inflammatory infiltrates in skeletal muscle as well as the circulating levels of cyclooxygenase metabolites and NO were higher in resistant C3H mice than in susceptible BALB/c mice. In addition, the spontaneous release of NO by spleen cells increased earlier in the C3H mouse strain. In the chronic infections, the tissue inflammatory reaction was still prominent in both groups of mice, but a moderate increase of thromboxane B2 concentration and in NO released by spleen cells was observed only in C3H mice. This comparative study shows that these mediators could be mainly related to protective mechanisms in the acute phase, but seem not to be involved in its maintenance in the chronic T. cruzi infections.  相似文献   

3.
1. Substantial increases in total creatine phosphokinase (CPK) and in isoenzymes from heart (CPK-MB) and skeletal muscle (CPK-MM) were observed during acute infections with the House 510 and House 11 strains of Trypanosoma cruzi. 2. In infections with the reticulotropic Tulahuen strain total CPK levels were lower and the isoenzyme pattern was essentially normal. 3. Gamma-glutamyl transpeptidase was considerably increased in the Tulahuen but not in the House 510 and House 11 infections. 4. These findings are useful in assessing tissue damage during T. cruzi infections and they also demonstrate differences between myotropic and reticulotropic strains which may aid in their taxonomic classification.  相似文献   

4.
The glyoxalase system, comprizing glyoxalase I and glyoxalase II, is a ubiquitous pathway that detoxifies highly reactive aldehydes, such as methylglyoxal, using glutathione as a cofactor. Recent studies of Leishmania major glyoxalase I and Trypanosoma brucei glyoxalase II have revealed a unique dependence upon the trypanosomatid thiol trypanothione as a cofactor. This difference suggests that the trypanothione-dependent glyoxalase system may be an attractive target for rational drug design against the trypanosomatid parasites. Here we describe the cloning, expression and kinetic characterization of glyoxalase I from Trypanosoma cruzi. Like L. major glyoxalase I, recombinant T. cruzi glyoxalase I showed a preference for nickel as its metal cofactor. In contrast with the L. major enzyme, T. cruzi glyoxalase I was far less fast-idious in its choice of metal cofactor efficiently utilizing cobalt, manganese and zinc. T. cruzi glyoxalase I isomerized hemithio-acetal adducts of trypanothione more than 2400 times more efficiently than glutathione adducts, with the methylglyoxal adducts 2-3-fold better substrates than the equivalent phenylglyoxal adducts. However, glutathionylspermidine hemithioacetal adducts were most efficiently isomerized and the glutathionylspermidine-based inhibitor S-4-bromobenzylglutathionylspermidine was found to be a potent linear competitive inhibitor of the T. cruzi enzyme with a K(i) of 5.4+/-0.6 microM. Prediction algorithms, combined with subcellular fractionation, suggest that T. cruzi glyoxalase I localizes not only to the cytosol but also the mitochondria of T. cruzi epimastigotes. The contrasting substrate specificities of human and trypanosomatid glyoxalase enzymes, confirmed in the present study, suggest that the glyoxalase system may be an attractive target for anti-trypanosomal chemotherapy.  相似文献   

5.
We compared two immunoperoxidase procedures for the identification of Trypanosoma cruzi antigens in wax sections of infected mouse tissues. Both an indirect immunoperoxidase and an avidin-biotinated horseradish peroxidase complex (ABC) procedure gave identical patterns of localization. The ABC procedure could be used with greater dilutions of antisera than the indirect procedure. Individual organisms were clearly identified in the absence of inflammation at scanning magnifications. In addition, fragments of parasites were identified in inflammatory lesions. Therefore, this technique should be valuable in experimental and clinical situations when the identification of few organisms or fragments of organisms is required.  相似文献   

6.
In experimental murine infections with Trypanosoma rangeli it has been observed development immune response to Trypanosoma cruzi. The aim of the present work was to analyze the result of antigenic stimuli and the protective effect with T. rangeli in T. cruzi infections. Mice groups immunized with metacyclic trypomastigotes of T. rangeli (Choach -2V strain), derived from haemolymph and salivary gland and reinfected with T. cruzi virulent populations (Tulahuen strain, SA strain and Dm28c clone) from infected in vitro cells, showed decrease severity of disease outcomes, low parasitemia levels and 100% survival of all mice immunized, in comparison with groups infected only with T. cruzi populations, which demonstrated tissue affection, high parasitemia levels and the death of all animals. The above mentioned data contribute to understand the biological behaviour of T. cruzi and T. rangeli and their interaction with vertebrate host.  相似文献   

7.
Infection of humans with the protozoan Trypanosoma cruzi leads to Chagas disease, or American trypanosomiasis, a disease that affects nearly 20 million people, and constitutes one of the largest socioeconomic burdens in Latin America. Much of the present knowledge on pathogenic mechanisms underlying T. cruzi infection comes from experimental murine models. Here, George A. DosReis reviews recent findings about the features of host cell-mediated immunity against the parasite and possible mechanisms leading to chronic infection.  相似文献   

8.
9.
10.
11.
Biochemical properties of Trypanosoma cruzi telomerase   总被引:1,自引:0,他引:1  
Trypanosomatid parasite infections have a devastating impact on human health. Little is known about the requirements for parasite growth during any stage of their complex, multi-host life cycle. In most eukaryotic organisms, sustained cell proliferation requires telomerase-dependent telomere length maintenance. Here we investigate the regulation and biochemical features of telomerase from Trypanosoma cruzi, the causative agent of Chagas disease. We found that T.cruzi telomerase is active in extracts from multiple developmental stages of the parasite life cycle. Detailed characterization of the enzymatic properties of telomerase using epimatigote-stage extract revealed a unique combination of substrate specificities, consistent with the evolutionary divergence of trypanosomes from previously established model systems for telomerase biochemical characterization. Results from partial purification of T.cruzi telomerase suggest that the catalytically active enzyme is a large ribonucleoprotein complex and that the internal RNA template has an atypical, cytosine-rich permutation. These results expand our understanding of telomerase enzymology and should encourage the development of parasite-specific telomerase inhibitors as a method for disease therapy.  相似文献   

12.
A cytosolic flavoprotein enzyme for the protozoan, Trypanosoma cruzi, has been purified essentially to homogeneity by DEAE-cellulose and 2',5'-ADP-agarose column chromatography. The native enzyme has a molecular weight of 100,000 +/- 6,000, is composed of two identical subunits of molecular weight 52,000 +/- 1,000, and contains FAD in the ratio of 1 mol of FAD per mol of enzyme subunit. The enzyme is NADPH-dependent and is capable of reducing cytochrome c, ferricyanide, 2,6-dichloroindophenol, and menadione, but not adrenalin. It does not hydroxylate either sodium salicylate or sodium p-hydroxybenzoate, but N-methylaniline and N,N-dimethylaminobenzaldehyde-supported oxidation of NADPH has been demonstrated. Plots of initial velocity against NADPH concentration give hyperbolic curves with Km values of 6.289 X 10(-5) M. The enzyme is clearly different from the microsomal NADPH-cytochrome c reductase in its intracellular distribution, molecular weight, dimeric nature, presence of only FAD, and activity against secondary and tertiary aromatic amines.  相似文献   

13.
Polyamines are known to play an essential role in cell growth and differentiation. In animals, putrescine is mainly synthesized from ornithine by ornithine decarboxylase (ODC). In higher plants and in bacteria putrescine can also be synthesized from arginine by arginine decarboxylase (ADC). In this paper we report the presence of significant levels of ADC activity in crude extracts of Trypanosoma cruzi, RA strain epimastigotes. ADC activity was detected during a very narrow time range, corresponding to the early logarithmic growth phase. This activity was inhibited by DL-alpha-difluoromethylarginine, a specific irreversible inhibitor of ADC and activated by DL-alpha-difluoromethylornithine, a specific irreversible inhibitor of ODC. The reaction showed an absolute requirement for pyridoxal phosphate, dithiothreitol and Mg++. The enzyme half life was about 10 hrs., showed maximum activity at pH 7.9 and a Km for arginine of 5 mM. ADC activity was stimulated by fetal-calf-serum and inhibited by spermine, probably through a negative feed-back regulation on the levels of the enzyme. ODC activity was not detected. These results confirm our previous reports on the capability of T. cruzi, RA strain epimastigotes to synthesize putrescine from arginine via agmatine by ADC and point out differences on polyamine metabolism between the parasite and the mammalian host cell.  相似文献   

14.
The effect of malaria on the chronic phase of Chagas' disease was investigated in mice. The animals were given Plasmodium bergheri-infected red blood cells 2 to 12 months after their initial inoculation with trypomastigotes of 3 different strains of Trypanosoma cruzi (Y. CL and Gilmar). in all the experiments carried out with one of the strains (CL), a somewhat variable but always considerable percentage of mice (average 39%) relapsed in to the acute phase of Chagas' disease. This relapse was characterized by a significant increase in the number of circulating trypomastigotes. Recrudescence was observed also with a 2nd strain of T. cruzi (Gilmar), which is similar in many aspects to the CL strain, e.g. the morphology of blood stages, curved of parasitemia and susceptibility to antibodies in vitro. In mice whose chronic phase was induced by trypomastigotes of the Y strain, malaria infections did not induce a typical acute phas with high parasitemia by T. cruzi. Bloodstream forms of Y parasites differ from those of CL and Gilmar strains morphologically as well as immunologically, i.e. only the Y strain is easily agglutinated and partly inactivated by specific immune serum. In light of this and other known characteristics of the strains used in the present work, the author speculates on mechanisms which allow malaria infections selectively to suppress acquired host resistance to certain strains of T. cruzi.  相似文献   

15.
A single form of serine hydroxymethyltransferase (SHMT) was detected in epimastigotes of Trypanosoma cruzi, in contrast to the three isoforms of the enzyme characterized from another trypanosomatid, Crithidia fasciculata [Capelluto D.G.S., Hellman U., Cazzulo J.J. & Cannata J.J.B. (1999) Mol. Biochem. Parasitol. 98, 187-201]. The T. cruzi SHMT was found to be highly unstable in crude extracts. In the presence of the cysteine proteinase inhibitors N-alpha-p-tosyl-L-lysine chloromethyl ketone and Ltrans-3-carboxyoxiran-2-carbonyl-L-leucylagmatine, however, the enzyme could be purified to homogeneity. Digitonin treatment of intact cells suggested that the enzyme is cytosolic. T. cruzi SHMT presents a monomeric structure shown by the apparent molecular masses of 69 kDa (native) and 55 kDa (subunit) determined by Sephadex G-200 gel filtration and SDS/PAGE, respectively. This is in contrast to the tetrameric SHMTs described in C. fasciculata and other eukaryotes. The enzyme was pyridoxal phosphate-dependent after L-cysteine and hydroxylamine treatments and it was strongly inhibited by the substrate analog folate, which was competitive towards tetrahydrofolate and noncompetitive towards L-serine. Partial sequencing of tryptic internal peptides of the enzyme indicate considerable similarity with other SHMTs, particularly from those of plant origin.  相似文献   

16.
17.
18.
Herein, we have analyzed major biological properties following dual-clone Trypanosoma cruzi infections in BALB/c mice. Eight T. cruzi clonal stocks, two of each principal genotype, including genotype 19 and 20 (T. cruzi I), hybrid genotype 39 (T. cruzi) and 32 (T. cruzi II) were combined into 24 different dual-clone infections. Special attention was given to characterize biological parameters assayed including: prepatent period, patent period, maximum of parasitemia, day of maximum parasitemia, area under the parasitemia curve, infectivity, mortality, and hemoculture positivity. Our findings clearly demonstrated that features resultant of dual-clone infections of T. cruzi clonal stocks did not display either the characteristics of the corresponding monoclonal infections or the theoretical mixture based on the respective monoclonal infections. Significant changes in the expected values were observed in 4.2-79.2% of the mixtures considering the eight biological parameters studied. A lower frequency of significant differences was found for mixtures composed by phylogenetically distant clonal stocks. Altogether, our data support our hypothesis that mixed T. cruzi infections have a great impact on the biological properties of the parasite in the host and re-emphasizes the importance of considering the possible occurrence of natural mixed infections in humans and their consequences on the biological aspects of ongoing Chagas' disease.  相似文献   

19.
20.
Trypanosoma cruzi is the causative agent of Chagas disease, an endemic human parasitosis in Latin America. This protozoan is transmitted to human and other mammals by blood-feeding bugs belonging to the Triatominae subfamily. There are two strains (T. cruzi I and T. cruzi II) presenting different biological and ecological characteristics. An original agent-based model (ABM) was designed for predicting the prevalence (i.e., proportion of infected individuals in the total population at a given time) of T. cruzi I and II during single and mixed infections. The ABM was calibrated from experimental data retrieved from literature. It was shown that inclusion of reservoir hosts as supplementary type of agent in the model was necessary for obtaining realistic simulation results of the prevalence of the two strains. This is totally in agreement with experimental and field observations on the importance of reservoirs in the parasite transmission cycle. Proposals were made for refining the model. More generally, the advantages and limitations of the ABM in parasitology modeling have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号