首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the biochemical activities of purified polyoma (Py) large T antigen (T Ag) that was capable of mediating the replication of a plasmid containing the Py origin (ori(+) DNA) in mouse cell extracts. We report here that like the T Ag encoded by simian virus 40 (SV40), Py T Ag has DNA helicase and double-stranded DNA fragment unwinding activities. Py T Ag displaced DNA fragments greater than 1,600 nucleotides which were annealed to complementary sequences in single-stranded M13 by translocating in the 3' to 5' direction. Both helicase and double-stranded DNA fragment unwinding reactions were completely dependent upon NTP hydrolysis, displaying a strong preference for ATP and dATP. At low T Ag concentrations, significantly more Py ori(+) DNA fragment was unwound compared with a fragment lacking the replication origin. However, at higher ratios of Py T Ag to DNA, equivalent to those used in replication reactions, unwinding of both ori-containing and -lacking fragments was equally efficient. This is in contrast to SV40 T Ag which exhibited a more stringent requirement for SV40 origin sequences under similar conditions. Furthermore, some of the nucleotides that supported the helicase and unwinding activities of Py T Ag were different from those for the same SV40 T Ag reactions. We have also observed that in contrast to the very poor replication of linear SV40 ori(+) DNA by SV40 T Ag in human cell extracts, linear Py ori(+) DNA was replicated efficiently in mouse cell extracts by Py T Ag. However, despite the fact that linear Py ori(+), SV40 ori(+), and ori(-) DNA fragments could be unwound with comparable efficiency by Py T Ag, only fragments containing the Py replication origin were replicated in vitro. These results suggest that the initiation of DNA synthesis at the Py origin of replication requires features in addition to unwinding of the template.  相似文献   

2.
This study describes the development of a transient expression system for CHO cells based on autonomous replication and retention of transfected plasmid DNA. A transient expression system that allows extrachromosomal amplification of plasmids permits more plasmid copies to persist in the transfected cell throughout the production phase leading to a significant increase in transgene expression. The expression system, named Epi-CHO comprises (1) a CHO-K1 cell line stably transfected with the Polyomavirus (Py) large T (LT) antigen gene (PyLT) and (2) a DNA expression vector, pPyEBV encoding the Py origin (PyOri) for autonomous plasmid amplification and encoding Epstein-Barr Virus (EBV) nuclear antigen-1 (EBNA-1) and OriP for plasmid retention. The CHO-K1 cell line expressing PyLT, named CHO-T was adapted to suspension growth in serum-free media to facilitate large-scale transient transfection and recombinant gene expression. Enhanced green fluorescent protein (EGFP) and human growth hormone (hGH) were used as reporter proteins to demonstrate transgene expression and productivity. Transfection of suspension-growing CHO-T cells with the vector pPyEBV encoding hGH resulted in a final concentration of 75 mg L(-1) of hGH in culture supernatants 11 days following transfection.  相似文献   

3.
Cell extracts of FM3A mouse cells replicate polyomavirus (Py) DNA in the presence of immunoaffinity-purified Py large T antigen, deoxynucleoside triphosphates, ATP, and an ATP-generating system. This system was used to examine the effects of mutations within or adjacent to the Py core origin (ori) region in vitro. The analysis of plasmid DNAs containing deletions within the early-gene side of the Py core ori indicated that sequences between nucleotides 41 and 57 define the early boundary of Py DNA replication in vitro. This is consistent with previously published studies on the early-region sequence requirements for Py replication in vivo. Deleting portions of the T-antigen high-affinity binding sites A and B (between nucleotides 57 and 146) on the early-gene side of the core ori led to increased levels of replication in vitro and to normal levels of replication in vivo. Point mutations within the core ori region that abolish Py DNA replication in vivo also reduced replication in vitro. A mutant with a reversed orientation of the Py core ori region replicated in vitro, but to a lesser extent that wild-type Py DNA. Plasmids with deletions on the late-gene side of the core ori, within the enhancer region, that either greatly reduced or virtually abolished Py DNA replication in vivo replicated to levels similar to those of wild-type Py DNA plasmids in vitro. Thus, as has been observed with simian virus 40, DNA sequences needed for Py replication in vivo are different from and more stringent than those required in vitro.  相似文献   

4.
5.
Cells transformed by Polyoma virus (Py) can undergo a high rate of excision or amplification of integrated viral DNA sequences, and these phenomena require the presence of homology (i.e., repeats) within the viral insertion as well as a functional viral large T antigen (T-Ag). To determine whether the main role of large T-Ag in excision and amplification was replicative or recombination-promoting, we studied transformed rat cell lines containing tandem insertions of a ts-a Py molecule (encoding a thermolabile large T-Ag) with a deletion of the origin of viral DNA replication. Culturing of these cells at the temperature permissive for large T-Ag function did not result in any detectable excision or amplification of integrated Py sequences. We then introduced into origin-defective lines a recombinant plasmid containing the viral origin of replication and the gene coding for resistance to the antibiotic G418. All G418-resistant clones analyzed readily amplified the integrated plasmid molecules when grown under conditions permissive for large T-Ag function, showing that these cells produced viral large T-Ag capable of promoting amplification in trans of DNA sequences containing the Py origin. These observations strongly suggest that Polyoma large T antigen promotes excision or amplification of viral DNA by initiating replication at the integrated origin, providing a favorable substrate for subsequent recombination.  相似文献   

6.
7.
After exposure of mouse embryo cells to the early temperature-sensitive mutant tsP155 of polyoma virus (Py), a transformed cell line (Cyp line) that can be readily induced to synthesize Py by transfer to 33 degrees C was isolated at 39 degrees C (7). Virus production and synthesis of free viral DNA occurring after temperature shiftdown or superinfection with wild-type Py or both were studied in several clonal isolates of the Cyp cell line. Measurements of virus yields indicated that, although some could be induced more effectively than others, all cell clones behaved as highly permissive when subjected to superinfection. We analyzed the origin of free viral DNA accumulating in the superinfected cultures, taking advantage of (i) the unique physical properties of the low-molecular-weight DNA which, in the case of one of the Cyp clones, accumulates during temperature shiftdown, and (ii) the differences between resident and superinfecting viral genomes in their susceptibilities towards restriction endonucleases. At 33 degrees C, both viral genomes were found to accumulate in all clones studied whereas in the case of the clones with lower inducibility, the replication of the resident genome appeared to be enhanced by superinfection. At 39 degrees C, however, accumulation of the superinfecting genome was not accompanied by that of the resident genome, unless it had already been initiated before superinfection. These findings demonstrate that, when routinely cultivated at 39 degrees C, Cyp cells contain few viral DNA molecules readily available for autonomous replication and that, upon transfer to 33 degrees C, therefore, excision must first take place before the resident genome can accumulate as free viral DNA. Our findings also suggest that, unlike the P155 gene product provided by the resident viral genome upon induction, the allelic gene product supplied by the superinfecting genome may be less effective in triggering excision than in promoting replication.  相似文献   

8.
Purified Rep (or RepA) protein, a replication initiator of plasmid pSC101, is present almost solely in the dimer form, and its binding activity for the directly repeated sequences (iterons) in the replication origin (ori) is very low. When Rep protein was treated with guanidine hydrochloride followed by renaturation, it was shown to bind to the iterons with very high efficiency. A gel shift experiment suggested that guanidine-treated Rep bound to iterons as a monomer form. The Rep monomer bound noncooperatively to the three iterons and induced bending of the DNA helix axis in the same direction (about 100 degrees ). The configuration of the IHF box that is a binding site of another DNA bending protein IHF, the three iterons and an AT-rich region between these sequences was important for efficient bending of the ori region. Furthermore, a mutant Rep protein (Rep(IHF)) which can support the plasmid replication in IHF-deficient host cells was purified, and it was found that affinity of the Rep(IHF) monomer for iterons was similar to that of wild-type Rep and bent DNA only 14 degrees more strongly than did the wild-type Rep. Rep(IHF)-dependent plasmid replication, however, required both enhancer regions, par and IR-1, in addition to "core ori" as a minimal essential ori, whereas only one of these two enhancers was necessary for wild-type Rep-dependent replication. How Rep(IHF) can support plasmid replication in the absence of IHF is discussed.  相似文献   

9.
The regulatory DNA (enhancer) of polyomavirus (Py) is a major determinant of tissue-specific DNA replication during acute infection of newborn mice. Previously, we reported that the combination of one of the two Py enhancers (A enhancer) and the repeated Moloney murine leukemia virus (Mo-MuLV) enhancer gave a chimeric Py genome (Py-MuLV) that replicates predominantly in the acinar cells of the pancreas, a tissue not permissive for wild-type PyA2 replication (R. Rochford, B. A. Campbell, and L. P. Villareal. Proc. Nat. Acad. Sci. USA 84:449-453,1987). In this report, we further examine the combined enhancer requirements for acinar cell-specific Py replication. We also compare enhancer requirements for Py replication in the acinar cells of the pancreas with those of a transformed acinar cell line (266-6 cells). The deletion of sequences within the A enhancer of Py-MuLV (nucleotides 5098 to 5132) results in a virus with 10-fold-reduced levels of pancreas-specific replication. The deletion, however, of one of the 72-bp repeated Mo-MuLV enhancer sequences from Py-MuLV results in a complete loss of pancreas-specific DNA replication. Thus, the Py A enhancer is required for efficient replication of Py in the pancreas without otherwise altering organ specificity, but both of the repeated copies of the Mo-MuLV enhancer are essential for pancreas-specific Py replication. In contrast to the enhancer requirements for in vivo pancreas replication, in transformed acinar cells (266-6), PyA2 wild-type replicated efficiently and the Py-MuLV recombinant replicated inefficiently. These data suggest that the cell-specific control of DNA replication is different between normal pancreas cells and their transformed cell line counterparts and that this difference is apparent in the enhancer requirement of cell-specific Py DNA replication.  相似文献   

10.
11.
Simian cells have been transformed with SV40 origin-defective recombinant plasmids containing the tsA209 T-antigen gene. These plasmids contain deletions of either 5 or 52 nucleotides that include the BglI site at the SV40 ori, are defective for replication in COS-1 cells but retain a functional SV40 early promoter. Two cell lines transformed with these plasmids, U4 and S7, and their respective clonal derivatives E5 and F11, contain the tsA209 T-antigen gene integrated into the cell DNA and express T-antigen as detected by immunoprecipitation and immunofluorescence. These cells behave as ts-COS cells, since they complement in a temperature dependent manner the replication of an SV40 derived recombinant plasmid. When transfected with recombinant plasmids containing the chloramphenicol acetyl transferase (CAT) gene cloned into SV40 replicons, ts-COS cells were able to regulate the induction of the CAT activity by temperature. The ratios of CAT activity observed at permissive versus restrictive temperature were in the range of 20-400. Thus, these ts-COS cells are useful systems for the regulated expression of cloned genes in simian cells.  相似文献   

12.
Monkey cell lines have been transformed with a mixture of plasmids pSV2neo and pSLVa232N, a derivative of plasmid pSLVa232 (Portela et al., 1985b). Plasmid pSLVa232N contained the influenza virus genes encoding non-structural proteins under the control of the SV40 late promoter in pSLts1 vector that includes the SV40 ori and the tsA209 T-antigen gene. At restrictive temperature, plasmid sequences remained stably integrated in the cell genome, but upon temperature shift-down, defined circular DNA molecules were generated and amplified up to 2000-5000 copies/cell. Restriction analysis, Southern blot hybridization and partial sequencing indicate that one such episome, pC5, was derived from the integrated plasmid sequences by a homologous recombination event that led to deletion of the pBR322 sequences included in pSLVa232N. Concomitant with gene amplification, an induction of 20-65-fold in the expression of NS1 and NS2 proteins was observed after temperature shift-down. Thus, gene cloning into vector pSLts1 and transformation at restrictive temperature of cells permissive for SV40 DNA replication, appears to be a useful strategy for the controlled amplification and expression of cloned genes.  相似文献   

13.
H Li  S Bhattacharyya    C Prives 《Journal of virology》1997,71(9):6479-6485
The amino-terminal portion of polyomavirus (Py) large T antigen (T Ag) contains two phosphorylation sites, at T187 and T278, which are potential substrates for cyclin-dependent kinases (CDKs). Our experiments were designed to test whether either or both of these sites are involved in the origin DNA (ori DNA) replication function of Py T Ag. Mutations were generated in Py T Ag whereby either or both threonines were replaced with alanine, generating T187A, T278A, and double-mutants (DM [T187A T278A]) mutant T Ags. We found that the Py ori DNA replication functions of T278A and DM, but not T187A, mutant T Ags were abolished both in vivo and in vitro. Consistent with this finding, it was shown that the ori DNA binding and unwinding activities of mutant T278A Py T Ag were greatly impaired. Moreover, whereas wild-type Py T Ag is an efficient substrate for phosphorylation by cyclin A-CDK2 and cyclin B-cdc2 complexes, it is phosphorylated poorly by a cyclin E-CDK2 complex. In contrast to mutant T187A, which behaved similarly to the wild-type protein, T278A was only weakly phosphorylated by cyclin B-cdc2. These data thus suggest that T278 is an important site on Py T Ag for phosphorylation by CDKs and that loss of this site leads to its various defects in mediating ori DNA replication. S- and G2-phase-specific CDKs, but not a G1-specific CDK, can phosphorylate wild-type T Ag, which suggests yet another reason why DNA tumor viruses require actively cycling host cells.  相似文献   

14.
The minimal replication origin (ori) of the plasmid pSC101 has been previously defined as an approximately 220-bp region by using plasmids defective in the par region, which is a cis-acting determinant of plasmid stability. This ori region contains the DnaA binding sequence, three repeated sequences (iterons), and an inverted repeat (IR) element (IR-1), one of the binding sites of an initiator protein, Rep (or RepA). In the present study, we show that plasmids containing par can replicate at a nearly normal copy number in the absence of IR-1 but still require a region (the downstream region) between the third iteron and IR-1. Because par is dispensable in plasmids retaining IR-1, par and IR-1 can compensate each other for efficient replication. The region from the DnaA box to the downstream region can support DNA replication at a reduced frequency, and it is designated "core-ori." Addition of either IR-1 or par to core-ori increases the copy number of the plasmid up to a nearly normal level. However, the IR-1 element must be located downstream of the third iteron (or upstream of the rep gene) to enhance replication of the plasmid, while the par region, to which DNA gyrase can bind, functions optimally regardless of its location. Furthermore, the enhancer activity of IR-1 is dependent on the helical phase of the DNA double helix, suggesting that the Rep protein bound to IR-1 stimulates the activation of ori via its interaction with another factor or factors capable of binding to individual loci within ori.  相似文献   

15.
Murine polyomavirus (Py) and simian virus (SV40) encode homologous large T antigens (T Ags) and also have comparable sequence motifs in their core replication origins. While the ability of SV40 T Ag to produce specific distortions within the SV40 core replication origin (ori) in a nucleotide-dependent fashion has been well documented, little is known about related effects of Py T Ag on Py ori DNA. Therefore, we have examined viral origin DNA binding in the presence of nucleotide and the resulting structural changes induced by Py and SV40 T Ags by DNase I footprinting and KMnO4 modification assays. The structural changes in the Py ori induced by Py T Ag included sites within both the A/T and early side of the core origin region, consistent with what has been shown for SV40. Interestingly, however, Py T Ag also produced sites of distortion within the center of the origin palindrome and at several sites within both the early and late regions that flank the core ori. Thus, Py T Ag produces a more extensive and substantially different pattern of KMnO4 modification sites than does SV40 T Ag. We also observed that both T Ags incompletely protected and distorted the reciprocal ori region. Therefore, significant differences in the interactions of Py and SV40 T Ags with ori DNA may account for the failure of each T Ag to support replication of the reciprocal ori DNA in permissive cell extracts.  相似文献   

16.
Although oncogenes and tumor suppressor genes have been implicated in carcinogenesis and tumor progression, their relationship to the development of genomic instability has not been elucidated. To examine this role, we transfected oncogenes (polyomavirus middle [Py] and large T [MT and LT]) and adenovirus serotype 5 E1A) into two NIH 3T3-derived cell lines, EN/NIH 2-4 and EN/NIH 2-20. Both cell lines contain two stable integrants of a variant of the retrovirus vector pZipNeoSV(x)1 that has been modified by deletion of the enhancer elements from the long terminal repeats. DNA rearrangements activating the silent neomycin phosphotransferase gene (neo) present in these integrants were identified by selection of cells in the antibiotic G418. Whereas control-transfected EN/NIH cell lines do not yield G418-resistant subclones (GRSs), a fraction of oncogene-transfected EN/NIH 2-4 (8 of 19 Py MT, 5 of 17 Py LT, and 11 of 19 E1A) and 2-20 (7 of 15 Py MT) cell lines gave rise to GRSs at differing frequencies (0.33 x 10(-6) to 46 x 10(-6) for line 2-4 versus 0.11 x 10(-6) to 1.3 x 10(-6) for line 2-20) independent of cell generation time. In contrast, a distinctly smaller fraction of mutant Py MT-transfected EN/NIH cell lines (1 of 10 MT23, 1 of 10 MT1015, and 0 of 10 MT59b) resulted in GRSs. Southern analysis of DNA from selected oncogene-transfected GRSs demonstrated genomic rearrangements of neo-containing cellular DNA that varied in type (amplification and/or novel fragments) and frequency depending on the specific oncogene and EN/NIH cell line used in transfection. Furthermore, only one of the two neo-containing genomic loci present in both EN/NIH cell lines appeared to be involved in these genomic events. In addition to effects related to the genomic locus, these observations support a role for oncogenes in the development of genetic changes associated with tumor progression.  相似文献   

17.
K Geider  C Hohmeyer  R Haas  T F Meyer 《Gene》1985,33(3):341-349
DNA cloning vectors were developed which utilize the replication origin (ori) of bacteriophage fd for their propagation. These vectors depend on the expression of viral gene 2 that was inserted into phage lambda, which in turn was integrated into the host genome. The constitutive expression of gene 2 in the host cells is sufficient for the propagation of at least 100 pfd plasmids per cell. In addition to the fd ori, the pfd vectors carry various antibiotic-resistance genes and unique restriction sites. Some of these vectors have no homologies to commonly used pBR plasmids or to lambda DNA. The nucleotide sequence of the vectors can be deduced from published sequences. Large DNA inserts can be stably propagated in pfd vectors; these are more stable than similar DNA fragments cloned in intact genomes of filamentous bacteriophage. Inclusion of phage sequences required for efficient phage packaging and infection with a helper phage resulted in formation of phage particles containing single-stranded plasmid genomes. Growth at 42 degrees C without selective pressure results in loss of pfd plasmids.  相似文献   

18.
Polyoma (Py) virus multiplies, at 34 and 38.5 C, in wild-type (WT-4) and in ts A1S9 mouse L cells, which are temperature sensitive for growth and for DNA replication (R. Sheinin, 1976; L. H. Thompson et al., 1970). De novo synthesis of double-stranded, fully covalently closed Py DNA has been shown to proceed by semiconservative replication in WT-4 and ts A1S9 cells at the permissive and nonpermissive temperatures. Cell DNA is made late during infection, by both cell types and at both temperatures. Semiconservative replication of cell DNA proceeds in Py-infected WT-4 cells incubated at 34 or at 38.5 C and in Py-infected ts A1S9 cells incubated at 34 C. In virus-infected ts A1S9 cells incubated at 38.5 C, cell DNA synthesis appears to proceed almost entirely by a process analogous to repair replication. The inability of ts A1S9 cells to produce large-molecular-weight chromosomal DNA strands, at 38.5 C, by the normal mechanism is not overcome by Py infection.  相似文献   

19.
The tsBN462 cell line, a temperature-sensitive (ts) mutant isolated from the hamster cell line, BHK21/13, cannot progress into S phase at 39.5 degrees C, following the release from isoleucine deprivation. The mutant cells were transfected with high molecular weight (HMW) DNA from human KB cells, and several human DNA bands were found to be conserved through three cycles of ts+ transformation. Conserved human DNA was isolated from the cosmid library of the secondary ts+ transformant (K-1-1), using 32P-labelled total human DNA as a probe. The isolated human DNA covers about 70 kb of human DNA flanked with hamster DNA, and originates from the human X chromosome. The middle part (56 kb) of the isolated human DNA was conserved through the primary, secondary and tertiary ts+ transformation, without gross rearrangement.  相似文献   

20.
Initiation of simian virus 40 (SV40) DNA replication is facilitated by two auxiliary sequences that flank the minimally required origin (ori) core sequence. In monkey cells, the replication rate of each of the four ori configurations changed with time after transfection in a characteristic pattern. This pattern was reproduced in an extract from SV40-infected monkey cells by varying the ratio of DNA substrate to cell extract; DNA replication in vitro depended on ori auxiliary sequences to the same extent as they did in vivo. Facilitation by ori auxiliary sequences was lost at high ratios of DNA to cell extract, revealing that the activity of these sequences required either multiple initiation factors or a molar excess of one initiation factor bound to ori. This parameter, together with ionic strength and the method used to measure DNA replication, determined the level of facilitation by ori auxiliary sequences in vitro. The activity of ori auxiliary sequences was not diminished in vivo or in vitro by increasing amounts of large tumor antigen. Therefore, ori auxiliary sequences promoted initiation of replication at some step after tumor antigen binding to ori. Furthermore, although cellular factors could modulate the activity of ori auxiliary sequences in vitro, these factors did not appear to involve nucleosome assembly because no correlation was observed between the number of nucleosomes assembled per DNA molecule and facilitation by ori auxiliary sequences. These results demonstrate that SV40 ori auxiliary sequences can function in vitro as they do in vivo and begin to elucidate their role in initiating DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号