首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There have been numerous proposals suggesting that whole-culture methods - in which all cells in a growing culture are treated identically - can synchronize cells. An explicit defense of these methods has been presented (Spellman and Sherlock, this issue, pp. 270-273, ). Here, this defense of whole-culture 'synchronization' is subjected to a critical evaluation leading to the conclusion that whole-culture synchronization cannot synchronize cells - at all. Whole-culture methods cannot produce a set of cells that reflects the size and genome composition of cells of any particular cell-cycle age during the normal cell cycle. Thus, in addition to the well-recognized problem of artifacts, it is proposed that experiments using whole-culture treatments (usually starvation or inhibition methods) are not suitable for cell-cycle analysis because these methods do not produce a synchronized culture.  相似文献   

2.
Accurate cell-size determinations support the prediction that serum starvation and related whole-culture methods cannot synchronize cells. Theoretical considerations predict that whole-culture methods of synchronization cannot synchronize cells. Upon serum starvation, the fraction of cells with a G1-phase amount of DNA increased, but the cell-size distribution is not narrowed. In true synchronization, the cell-size distribution should be narrower than the cell-size distribution of the original culture. In contrast, cells produced by a selective (i.e. non-whole-culture) method have a specific DNA content, a narrow size distribution, and divide synchronously. The general theory leading to the conclusion that whole-culture methods for synchronization do not work implies that one can generalize these serum-starvation results to other cell lines and other whole-culture methods, to conclude that these methods do not synchronize cells.  相似文献   

3.
Abstract.   It has been predicted that whole-culture methods of synchronization cannot synchronize cells. We have tested whether thymidine block, one type of whole-culture synchronization, can synchronize L1210 cells. We demonstrate experimentally that the thymidine block method cannot produce a synchronized culture. Although thymidine-treated cells are arrested primarily with an S-phase amount of DNA, there is no narrowing of the cell size distribution and there is no synchronized division pattern following release from the thymidine block. In contrast to a whole-culture synchronization method, cells produced by a selective (i.e. non-whole-culture) method not only have a specific DNA content, but also have a narrow size distribution and divide synchronously. Generalizing the results to other cell lines, we suggest that these conclusions call into question experimental measurements of gene expression during the division cycle based on thymidine inhibition synchronization.  相似文献   

4.
Heat-sensitive (arrested at 39.5°C, multiplying at 33°C) and cold-sensitive (arrested at 33°C, multiplying at 39.5°C) cell-cycle mutants of the P-815-X2 murine mastocytoma line were used for the preparation of cell extracts. These were tested for their effects on DNA synthesis in ‘gently lysed cells’ (obtained by treatment with 0.01% Brij-58) or ‘highly lysed cells’ (obtained by treatment with 0.1% Brij-58). Gently lysed cells prepared from proliferating P-815-X2 or mutant cells incorporated [3H]dTTP efficiently, while highly lysed cells exhibited a low level of [3H]dTTP incorporation which was markedly increased by the addition of extracts from proliferating cells. Extracts prepared from arrested mutant cells, however, were found to inhibit DNA synthesis by gently and highly lysed cells prepared from proliferating cells. After return of arrested mutant cells to the permissive temperature, stimulating activity in cell extracts reappeared at the time of reentry of cells into S phase. Both stimulatory and inhibitory activities were associated with material(s) of molecular weight above 25 000, but differed in heat sensitivity and in sensitivity to immobilized proteinase and ribonuclease. Extracts from arrested cells counteracted the stimulating effects of extracts from proliferating cells with kinetics suggesting competitive interaction between stimulating and inhibitory factors.  相似文献   

5.
The serine/threonine kinase PAK4 regulates cytoskeletal architecture, and controls cell proliferation and survival. In most adult tissues PAK4 is expressed at low levels, but overexpression of PAK4 is associated with uncontrolled proliferation, inappropriate cell survival, and oncogenic transformation. Here we have studied for the first time, the role for PAK4 in the cell cycle. We found that PAK4 levels peak dramatically but transiently in the early part of G1 phase. Deletion of Pak4 was also associated with an increase in p21 levels, and PAK4 was required for normal p21 degradation. In serum-starved cells, the absence of PAK4 led to a reduction in the amount of cells in G1, and an increase in the amount of cells in G2/M phase. We propose that the transient increase in PAK4 levels at early G1 reduces p21 levels, thereby abrogating the activity of CDK4/CDK6 kinases, and allowing cells to proceed with the cell cycle in a precisely coordinated way.  相似文献   

6.
Two heat-sensitive (arrested in G1 at 39.5°C) and two cold-sensitive (arrested in G1 at 33°C) clonal cell-cycle mutants of the murine P-815-X2 mastocytoma line were tested for DNA polymerase α, β and γ activities. After transfer of mutant cells to the respective nonpermissive temperature, DNA polymerase α activities decreased more slowly than relative numbers of cells in S phase. Furthermore, numbers of DNA-synthesizing cells decreased to near-zero levels, whereas polymerase α activities in arrested cells were as high as 15–40% of control values. After return of arrested cells to the permissive temperature, polymerase α activities increased essentially in parallel with relative numbers of cells in S phase. In contrast to the changes in thymidine kinase (Schneider, E., Müller, B. and Schindler, R. (1983) Biochim. Biophys. Acta 741, 77–85), the decrease of polymerase α during entry of cells into proliferative quiescence thus appears to be under rather relaxed control, while after return of arrested cells to the permissive temperature the increase in polymerase α is tightly coupled with reentry of cells into S phase. For DNA polymerase β and γ activities, no obvious correlation with changes in the proliferative state of cells was detected.  相似文献   

7.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na++K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na++K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2·10?6 M. Neuro-2A cells contain (3.5±0.7)·105 ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7±0.4)·10?20 mol K+/min per copy of (Na++K+)-ATPase at room temperature.  相似文献   

8.
Human MCF-7 breast cancer cells are resistant to pro-apoptotic stimuli due to caspase-3 inactivation. On the other hand, they should be sensitive to agents like selective pharmacological inhibitors of cyclin-dependent kinases (CDKs) that (re)activate p53 tumor suppressor protein because they harbor intact p53 pathways. In this study we examined whether reconstitution of caspase-3 in MCF-7 cells sensitizes them to inhibitors of CDKs, by analyzing the effects of roscovitine (ROSC) and olomoucine (OLO), two closely related selective pharmacological CDK inhibitors, on both mother MCF-7 cells and a secondary mutant line, MCF-7.3.28 that stably expresses human caspase-3. The results show that ROSC is, as expected, much more potent than OLO. Surprisingly; however, ROSC and OLO reduced proliferation of parental MCF-7 cells more strongly than caspase-3-proficient counterparts. Both inhibitors arrest human breast cancer cells at the G(2)-phase of the cell cycle. Analysis of cell-cycle regulators by immunoblotting revealed that ROSC strongly induces p53 protein activity by inducing its phosphorylation at Ser46 in the MCF-7 cells lacking caspase-3, but not in caspase-3-proficient cells. Furthermore, reconstitution of caspase-3 in MCF-7 cells neither elevates the mitochondrial apoptosis rate nor significantly increases caspases activity upon ROSC treatment. However, the stabilization of p53 in response to DNA damaging agents is the same in both caspase negative and positive MCF-7 cells. Cytotoxic agents induce caspase-3-dependent apoptosis in caspase-3-proficient cells. These results indicate that reconstitution of MCF-7 cancer cells with caspase-3 sensitize them to the action of DNA damaging agents but not to ATP-like pharmacological inhibitors of CDKs.  相似文献   

9.
Cell-wall acidification and electrical reactions (depolarization and hyperpolarization) are typical auxin responses in maize (Zea mays L.) coleoptiles. In an attempt to test the role of the outer epidermis in these responses, they have been measured and compared in intact and peeled coleoptile fragments. To exclude interactions between parenchymal and epidermal cells, the coleoptile pieces were completely stripped of their outer epidermis. This preparation was monitored by means of a scanning electron microscope. When externally applied indole-3-acetic acid was tested, we found that neither cell-wall acidification nor the electrical membrane responses depended on the presence of intact epidermal cells.Abbreviations IAA Indole-3-acetic acid - MES 2-[N morpholino-ethane-sulfonic acid - TRIS 2-Amino-2-hydroxymethyl-1,3-propanediol We thank Kuki Kaethner for her excellent technical assistance. This work was supported by the Hessische Graduiertenförderung and the Deutsche Forschungsgemeinschaft.  相似文献   

10.
In the current report we provide evidence that the increased rate of cholesterol biosynthesis mediated by platelet-derived growth factor in the cell cycle of monkey (Macaca nemestrina) arterial smooth muscle cells can be separated from the increased rate of fluid pinocytosis using inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.  相似文献   

11.
Summary Testicular cells were prepared from neonatal (48 h after birth) mice by enzymatic dissociation and were cultured in serum-supplemented medium to investigate cell proliferation in vitro. The cultured cells were composed mostly of germ cells, identified by immunocytochemistry using a germ cell-specific antiserum, and supporting (immature Sertoli) cells. After 36 h in culture, the cells were pulse-labeled with 3H-thymidine and fixed at 2-h intervals for 36 h after labeling. Numbers of labeled and unlabeled metaphases of germ cells and supporting cells were counted, and percent labeled metaphases for both cell types were determined for cell-cycle analysis. The results indicate that germ cells, as well as supporting cells, incorporate 3H-thymidine and progress through the cell cycle in vitro. From the curve of the percent labeled metaphases for the supporting cells, the total cell cycle and intervals of DNA synthesis were estimated to be 27.2 h and 13.2 h, respectively.  相似文献   

12.
At 0°C, CHO cells efficiently incorporated [3H]thymidine into the nucleotide fraction, but not into DNA. Upon reincubation of asynchronous cultures at 37°C, 15–25% of the radioactivity contained in the cellular nucleotide fraction was released, in the form of thymidine, into the culture medium. At 0°C, however, radioactivity of the nucleotide fraction was retained within the cells. Similarly, dTMP phosphatase (EC 3.1.3.35) in cell extracts was active at 37°C, but not at 0°C, whereas thymidine kinase (EC 2.7.1.21) was active at both temperatures. If synchronous cultures in Gl phase were prelabeled at 0°C and reincubated at 37°C, almost all radioactivity in the nucleotide fraction was released into the medium, whereas in S-phase cultures nearly all radioactivity of the nucleotide fraction was incorporated into DNA. In synchronous S-phase cultures treated with hydroxyurea, radioactivity in the nucleotide fraction was released into the medium at a rate considerably lower than that observed for Gl-phase cells. Rates of endogenous synthesis of thymidine nucleotides were calculated from changes of cellular thymidine nucleotide content, incorporation of thymidine nucleotides into DNA and release of thymidine into the medium during reincubation of prelabeled cultures in thymidine-free medium. The results obtained (see Table III) reveal marked differences between Gl and S phases with respect to the determinants of thymidine nucleotide metabolism.  相似文献   

13.
Mammalian cells can be concentrated in a sound field. A method is introduced, which combines the reversible aggregation of cells in a sound field with the electrical breakdown of cell membranes to fuse cells, which are in contact. Human red blood cells and mouse myeloma cells are fused by means of that procedure.  相似文献   

14.
Here, we discuss the findings to date about genes and pathways required for regulation of somatic follicle-cell proliferation and differentiation during Drosophila oogenesis and demonstrate how loss of these genes contributes to the tumorigenic potential of mutant cells. Follicle cells undergo cell-fate determination through stepwise activation of multiple signaling pathways, including the Notch, Hedgehog, Wingless, janus kinase/STAT, and JNK pathways. In addition, changes in DNA replication and cellular growth depend on the spatial and temporal activation of the mitotic cycle-endocycle and endocycle-gene amplification cell-cycle switches and insulin-dependent monitoring of cellular health; systemic loss of these pathways contributes to loss of controlled cellular proliferation, loss of differentiation/growth, and aberrant cell polarity in follicle cells. We also highlight the effects of the neoplastic and Hippo pathways on the cell cycle and cellular proliferation in promoting normal development and conclude that lack of coordination of multiple signaling pathways promotes conditions favorable for tumorigenesis.  相似文献   

15.
Cell-surface proteins of the embryonal carcinoma line C17-S1 1003 (1003) and of some of its mesenchymal derivatives were studied. The surface proteins were labelled with 125I using the lactoperoxidase-glucose-glucose oxidase system either on the cells attached to the culture dishes or after their dissociation. Iodinated proteins were analyzed by two-dimensional gel electrophoresis. The patterns obtained with embryonal carcinoma cells 1003 and with two mesenchymal cell types derived from them, namely embryonic mesenchymal cells (line 10035) and fibroblastic cells (line 10031), were different one from the other, especially when considering the group of proteins labelled on the attached cells. The pattern of cell-surface proteins of the myoblastic line 1168, also derived from C17-S1, was found to be similar to that of 10031 fibroblastic cells. This result is discussed in the light of the phenotypic transition toward myogenesis, which can be obtained with 10031 fibroblastic cells but not with 10035 embryonic mesenchymal cells. A direct method of detection of lectin-binding proteins permitted us to identify the major concanavalin A-binding proteins. Two of them are common to all cell lines studied. They were labeled with 125I on the attached undifferentiated 1003 cells, while in all differentiated derivatives they became available for labelling after the cell detachment only.  相似文献   

16.
Motivated by the potential anticancer activity of both coumarin and 2-aminothiazole nuclei, a new set of thiazol-2-yl hydrazono-chromen-2-one analogs were efficiently synthesized aiming to obtain novel hybrids with potential cytotoxic activity. MTT assay investigated the significant potency of all the target compounds against the human cervical cancer cell lines (HeLa cells). Cell cycle analysis showed that the representative compound 8a led to cell cycle cessation at G0/G1 phase indicating that CDK2/E1complex could be the plausible biological target for these newly synthesized compounds. Thus, the most active compounds (7c and 8a-c) were tested for their CDK2 inhibitory activity. The biological results revealed their significant CDK2 inhibitory activity with IC50 range of 0.022–1.629 nM. Moreover, RT-PCR gene expression assay showed that compound 8a increased the levels of the nuclear CDK2 regulators P21 and P27 by 2.30 and 5.7 folds, respectively. ELISA tequnique showed also that compound 8a led to remarkable activation of caspases-9 and -3 inducing cell apoptosis. QSAR study showed that the charge distribution and molecular hydrophobicity are the structural features affecting cytotoxic activity in this series. Molecular docking study for the most potent cytotoxic compounds (7c and 8a-c) rationalized their superior CDK2 inhibitory activity through their hydrogen bonding and hydrophobic interactions with the key amino acids in the CDK2 binding site. Pharmacokinetic properties prediction of the most potent compounds showed that the newly synthesized compounds are not only with promising antitumor activity but also possess promising pharmacokinetic properties.  相似文献   

17.
Amino acids have various physiological activities that influence processes such as intestinal regeneration, EGF secretion, protein synthesis, and cell growth. Salivary glands are exposed to nutrients that influence their proliferation and regeneration. Glycine is included in saliva in large quantities and reportedly has important roles in antibacterial activities and the inhibition of tumor growth and as a precursor of nucleotide synthesis in cell proliferation. We have investigated the effects of glycine on the proliferation and differentiation of salivary glands by using mouse salivary-gland-derived progenitor (mSGP) cells. In cultures of mSGP cells, cell proliferation is suppressed in the presence of glycine, whereas it is promoted by its removal. Glycine promotes three-dimensional formations of mSGP cells, which are negative for immature markers and positive for differentiation markers. In cell-cycle analysis, cell-cycle progression is delayed at the S-phase by glycine supplementation. Glycine also suppresses the phosphorylation of p42/p44MAPK. These results suggest that glycine suppresses the proliferation and promotes the differentiation of mSGP cells, and that it has inhibitory effects on growth factor signaling and cell-cycle progression. Glycine might therefore be a physiological activator that regulates the proliferation and differentiation of salivary glands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported in part by the Advanced Education Program for Integrated Clinical, Basic and Social Medicine, Graduate School of Medical Sciences, Kumamoto University (Support Program for Improving Graduate School Education, MEXT, Japan).  相似文献   

18.
The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4Cdt2) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.  相似文献   

19.
Senescence marker protein-30 (SMP30) is an androgen-independent factor that decreases with aging. To elucidate the physiological functions of SMP30, we transfected human SMP30 cDNA into the human hepatoma cell line, Hep G2. These Hep G2/SMP30 transfectants, which stably expressed large amounts of SMP30, proliferated at a slower rate and synthesized less DNA than mock transfectants (Hep G2/pcDNA3 controls). Thus, enhanced expression of SMP30 retarded the growth of Hep G2/SMP30 cells. Ultrastructural studies by scanning electron microscopy revealed numerous microvilli covering the surfaces of Hep G2/SMP30 cells, whereas few microvilli appeared on control cells. Subsequently, transmission electron microscopy revealed that groups of Hep G2/SMP30 cells exhibited bile canaliculi and possessed specialized adhesion contacts, such as tight junctions and desmosomes, at interplasmic membranes. However, in controls, units of only two cells were seen, and these lacked specialized adhesion junctions. Moesin and ZO-1 are known to be concentrated in microvilli and at tight junctions, respectively. Double-immunostaining was performed to examine whether moesin and ZO-1 were expressed in bile canaliculi with microvilli at the apical regions of Hep G2/SMP30 cells. The intensity of moesin and ZO-1 staining in the contact regions of each cell was markedly higher in Hep G2/SMP30 than in control cells. Moreover, moesin stained more interior areas, which corresponded to the microvilli of bile canaliculi. Clearly, bile canaliculi with microvilli formed at the apical ends of Hep G2/SMP30 cells. These results indicate that SMP30 has an important physiological function as a participant in cell-to-cell interactions and imply that the down-regulation of SMP30 during the aging process contributes to the deterioration of cellular interactivity.Akihito Ishigami and Toshiko Fujita contributed equally to this work.This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan (to S.H., A.I., and N.M.), and a grant from the Health and Labour Sciences Research Grants for Comprehensive Research on Aging and Health and Research on Dementia and Fracture supported by the Ministry of Health, Labour, and Welfare, Japan (to A.I and N.M.), and a Grant-in-Aid for Smoking Research Foundation, Japan (to N.M.).  相似文献   

20.
Summary In order to understand how cancer cells accumulate, rat hepatoma ARL-6 cells were cultured for 8 d to identify factors involved in spontaneous cell proliferation and apoptosis. With increasing time in culture, the proportion of cells in the proliferative phases of the cell cycle and the rate of deoxyribonucleic acid (DNA) synthesis decreased. The waning of proliferation was associated with a gradual reduction of cell viability, and this was temporally related to the appearance of typical apoptotic morphology and DNA laddering. Medium replacement or supplementation with fetal calf serum (FCS) suppressed apoptosis, while medium change, but not fetal calf serum alone, enhanced cell proliferation. Apoptosis was also suppressed by dimethyl sulfoxide (DMSO), but supplementary glutathione was without effect. Expression of poly(adenosine diphosphate[ADP]-ribose)polymerase peaked on days 3–4 of culture, and was followed by a progressive decrease thereafter, consistent with proteolytic cleavage. This decrease was prevented to varying extents by complete medium replacement, FCS and DMSO, indicating a close temporal relationship between poly(ADP-ribose)polymerase activation and apoptosis. Expression of Fas and Bcl-2 did not change appreciably over the 8-d culture, but there was a gradual increase in Bax expression; medium change, FCS and DMSO all partly inhibited Bax expression. These data indicate that spontaneous apoptosis in cultured ARL-6 cells is inversely related to cell proliferation, and that nutrient supply, and to a lesser extent, serum-derived factors and oxidative stress modulate apoptosis in this system. Proteolytic cleavage of poly(ADP-ribose)polymerase and expression of Bax are likely to be mechanistically involved with the control of spontaneous apoptosis in ARL-6 cells, whereas changes in the levels of Fas and Bcl-2 do not play a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号