首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U4 and U6 small nuclear RNAs reside in a single ribonucleoprotein particle, and both are required for pre-mRNA splicing. The U4/U6 and U5 small nuclear ribonucleoproteins join U1 and U2 on the pre-mRNA during spliceosome assembly. Binding of U4 is then destabilized prior to or concomitant with the 5' cleavage-ligation. In order to test the role of U4 RNA, we isolated a functional spliceosome by using extracts prepared from yeast cells carrying a temperature-sensitive allele of prp2 (rna2). The isolated prp2 delta spliceosome contains U2, U5, U6, and possibly also U1 and can be activated to splice the bound pre-mRNA. U4 RNA does not associate with the isolated spliceosomes and is shown not to be involved in the subsequent cleavage-ligation reactions. These results are consistent with the hypothesis that the role of U4 in pre-mRNA splicing is to deliver U6 to the spliceosome.  相似文献   

2.
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.  相似文献   

3.
J R Maddock  J Roy    J L Woolford  Jr 《Nucleic acids research》1996,24(6):1037-1044
We have identified six new genes whose products are necessary for the splicing of nuclear pre-mRNA in the yeast Saccharomyces cerevisiae. A collection of 426 temperature-sensitive yeast strains was generated by EMS mutagenesis. These mutants were screened for pre-mRNA splicing defects by an RNA gel blot assay, using the intron- containing CRY1 and ACT1 genes as hybridization probes. We identified 20 temperature-sensitive mutants defective in pre-mRNA splicing. Twelve appear to be allelic to the previously identified prp2, prp3, prp6, prp16/prp23, prp18, prp19 or prp26 mutations that cause defects in spliceosome assembly or the first or second step of splicing. One is allelic to SNR14 encoding U4 snRNA. Six new complementation groups, prp29-prp34, were identified. Each of these mutants accumulates unspliced pre-mRNA at 37 degrees C and thus is blocked in spliceosome assembly or early steps of pre-mRNA splicing before the first cleavage and ligation reaction. The prp29 mutation is suppressed by multicopy PRP2 and displays incomplete patterns of complementation with prp2 alleles, suggesting that the PRP29 gene product may interact with that of PRP2. There are now at least 42 different gene products, including the five spliceosomal snRNAs and 37 different proteins that are necessary for pre-mRNA splicing in Saccharomyces cerevisiae. However, the number of yeast genes identifiable by this approach has not yet been exhausted.  相似文献   

4.
Pre-mRNA introns are spliced in a macromolecular machine, the spliceosome. For each round of splicing, the spliceosome assembles de novo in a series of ATP-dependent steps involving numerous changes in RNA-RNA and RNA-protein interactions. As currently understood, spliceosome assembly proceeds by addition of discrete U1, U2, and U4/U6*U5 snRNPs to a pre-mRNA substrate to form functional splicing complexes. We characterized a 45S yeast penta-snRNP which contains all five spliceosomal snRNAs and over 60 pre-mRNA splicing factors. The particle is functional in extracts and, when supplied with soluble factors, is capable of splicing pre-mRNA. We propose that the spliceosomal snRNPs associate prior to binding of a pre-mRNA substrate rather than with pre-mRNA via stepwise addition of discrete snRNPs.  相似文献   

5.
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15-30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.  相似文献   

6.
Transport of macromolecules across the nuclear envelope is an essential activity in eukaryotic cells. RNA molecules within cells are found complexed with proteins and the bound proteins likely contain signals for RNA export. RNAs microinjected into Xenopus oocyte nuclei are readily exported, and their export can be competed by self RNA but not by RNAs of other classes. This indicates that the rate-limiting step in RNA export is the interaction of RNAs with class-specific proteins, at least when substrate RNAs are present at saturating levels. Export of host mRNAs is inhibited following infection by some animal viruses, while the export of viral RNAs occurs. The HIV-1 RNA-binding protein, Rev, mediates the export of intron-containing viral RNAs that would normally be retained in nuclei. This requires a nuclear export signal (NES) within Rev and an element within the RNA to which Rev binds. In yeast, heat shock causes accumulation of poly(A)(+)RNA within nuclei but heat-shock mRNAs are transcribed and exported efficiently. This requires elements within heat shock mRNA that probably interact with a cellular protein to facilitate RNA export. In these cases, the proteins that recognize critical sequences in the RNAs probably direct the RNAs to an RNA export pathway not generally used for mRNA export. This would circumvent the general retention of most poly(A)(+)mRNAs following heat shock in yeast and the need for complete splicing of viral mRNAs that travel through the normal mRNA export pathway.  相似文献   

7.
Branched RNA     
The only RNA molecules known to be branched are circular structures with tails known as lariats that arise during nuclear pre-mRNA splicing. Lariats accumulate within a large multicomponent particle called a spliceosome that forms upon the addition of unspliced mRNA to nuclear extracts. Recently an RNA molecule has been observed to catalyze branch formation. In this case a single intron of a yeast mitochondrial pre-mRNA participates in a self-splicing reaction that results in the accumulation of branched lariats that are processed to correctly spliced exons. An enzyme highly specific for branch removal found in the same extracts that form branches during pre-mRNA splicing can debranch RNA lariats to their linear forms without loss of nucleotides. The chemical synthesis of branched RNA has recently been achieved. High yields of sequence-specific oligonucleotides are now available for the analysis of RNA splicing by techniques dependent on branch-site recognition.  相似文献   

8.
To examine the stability of yeast (Saccharomyces cerevisiae) pre-mRNA structures, we inserted a series of small sequence elements that generated potential RNA hairpins at the 5' splice site and branch point regions. We analyzed spliceosome assembly and splicing in vitro as well as splicing and nuclear pre-mRNA retention in vivo. Surprisingly, the inhibition of in vivo splicing approximately paralleled that of in vitro splicing. Even a 6-nucleotide hairpin could be shown to inhibit splicing, and a 15-nucleotide hairpin gave rise to almost complete inhibition. The in vitro results indicate that hairpins that sequester the 5' splice site have a major effect on the early steps of spliceosome assembly, including U1 small nuclear ribonucleoprotein binding. The in vivo experiments lead to comparable conclusions as the sequestering hairpins apparently result in the transport of pre-mRNA to the cytoplasm. The observations are compared with previous data from both yeast and mammalian systems and suggest an important effect of pre-mRNA structure on in vivo splicing.  相似文献   

9.
Prp8 protein: at the heart of the spliceosome   总被引:6,自引:2,他引:4       下载免费PDF全文
  相似文献   

10.
Removal of introns from pre-mRNA is an essential step of gene expression. The splicing reaction is catalyzed in a large complex termed the spliceosome. Introns are recognized during the early steps of spliceosome assembly with the formation of commitment complexes. Intron recognition is mediated by the interaction of splicing factors with conserved sequences present in the pre-mRNA. BBP/SF1 participates in this recognition by interacting with the pre-mRNA branch point in both yeast and mammals. This protein, which is essential in yeast, also interacts with the U2AF65/Mud2 splicing factor. However, its precise role in splicing complex formation is still unclear. We have now analyzed the presence of BBP and Mud2 in yeast splicing complexes using supershift and coprecipitation assays. We found that BBP is present together with Mud2 in commitment complex 2 (CC2), but is not detectable in commitment complex 1 (CC1). Furthermore, genetic and biochemical depletion of BBP demonstrated that it is required for CC2 formation. In addition we observed that BBP and Mud2 are not detectable in pre-spliceosomes. These are the first commitment complex components that are shown to be released during or immediately after pre-spliceosome formation. Interestingly, depletion of BBP or disruption of MUD2 had no significant effect on pre-spliceosome formation and splicing in vitro but led to a transient accumulation of CC1. These observations support a model in which BBP and Mud2 are recycled during transition from CC2 to pre-spliceosome.  相似文献   

11.
A Newman 《The EMBO journal》1987,6(12):3833-3839
In experiments involving deletion and rearrangement of intron sequences two small regions of the intron in the yeast CYH2 ribosomal protein gene were found to play important roles in splicing of the pre-mRNA. One element lies downstream of the 5' splice site, and the other is upstream of the branchpoint sequence UACUAAC. Deletion of the element upstream of the branchpoint prevents spliceosome formation and blocks splicing in vivo and in vitro. Deletion of the element downstream of the 5' splice site does not on its own block splicing but rescues spliceosome formation and splicing of pre-mRNA lacking the element upstream of the branchpoint. These elements correspond to two regions of sequence complementarity which are a conserved feature of the introns in yeast pre-mRNAs. Mixing and matching of the elements from the ACT1 and CYH2 gene introns showed that these elements can cooperate in an intron-specific fashion to control spliceosome assembly.  相似文献   

12.
A 5' splice site located in a 3' untranslated region (3'UTR) has been shown previously to inhibit gene expression. Natural examples of inhibitory 5' splice sites have been identified in the late 3'UTRs of papillomaviruses and are thought to inhibit viral late gene expression at early stages of the viral life cycle. In this study, we demonstrate that the interaction of the human immunodeficiency virus type 1 Rev protein with the Rev-responsive element (RRE) overcomes the inhibitory effects of a 5' splice site located within a 3'UTR. This was studied by using both a bovine papillomavirus type 1 L1 cDNA expression vector and a chloramphenicol acetyltransferase expression vector containing a 5' splice site in the 3'UTR. In both systems, coexpression of Rev enhanced cytoplasmic expression from vectors containing the RRE even when the RRE and the inhibitory 5' splice site were separated by up to 1,000 nucleotides. In addition, multiple copies of a 5' splice site in a 3'UTR were shown to act synergistically, and this effect could also be moderated by the interaction of Rev and the RRE. These studies provide additional evidence that at least one mechanism of Rev action is through interactions with the splicing machinery. We have previously shown that base pairing between the U1 small nuclear RNA and a 3'UTR 5' splice site is required for inhibition of gene expression. However, experiments by J. Kjems and P. A. Sharp (J. Virol. 67:4769-4776, 1993) have suggested that Rev acts on spliceosome assembly at a stage after binding of the U1 small nuclear ribonucleoprotein to the 5' splice site. This finding suggests that binding of additional small nuclear ribonucleoproteins, as well as other splicing factors, may be necessary for the inhibitory action of a 3'UTR 5' splice site. These data also suggest that expression of the papillomavirus late genes in terminally differentiated keratinocytes can be regulated by a viral or cellular Rev-like activity.  相似文献   

13.
Splicing of precursor mRNA takes place via two consecutive steps of transesterification catalyzed by a large ribonucleoprotein complex called the spliceosome. The spliceosome is assembled through ordered binding to the pre-mRNA of five small nuclear RNAs and numerous protein factors, and is disassembled after completion of the reaction to recycle all components. Throughout the splicing cycle, the spliceosome changes its structure, rearranging RNA-RNA, RNA-protein and protein-protein interactions, for positioning and repositioning of splice sites. DExD/H-box RNA helicases play important roles in mediating structural changes of the spliceosome by unwinding of RNA duplexes or disrupting RNA-protein interactions. DExD/H-box proteins are also implicated in the fidelity control of the splicing process at various steps. This review summarizes the functional roles of DExD/H-box proteins in pre-mRNA splicing according to studies conducted mostly in yeast and will discuss the concept of the complicated splicing reaction based on recent findings.  相似文献   

14.
15.
16.
Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc finger and RNA recognition motif (RRM). In yeast cells mutation of either the zinc finger or RRM destabilize Cwc2 and are lethal. Yeast cells depleted of Cwc2 accumulate pre-mRNA and display reduced levels of U1, U4, U5 and U6 snRNAs. Cwc2 depletion also reduces U4/U6 snRNA complex levels, as found with depletion of other NTC proteins, but without increase in free U4. Purified Cwc2 displays general RNA binding properties and can bind both snRNAs and pre-mRNA in vitro. A Cwc2 RRM fragment alone can bind RNA but with reduced efficiency. Under splicing conditions Cwc2 can associate with U2, U5 and U6 snRNAs, but can only be crosslinked directly to the U6 snRNA. Cwc2 associates with U6 both before and after the first step of splicing. We propose that Cwc2 links the NTC to the spliceosome during pre-mRNA splicing through the U6 snRNA.  相似文献   

17.
Requirements for U2 snRNP addition to yeast pre-mRNA.   总被引:8,自引:2,他引:6       下载免费PDF全文
The in vitro spliceosome assembly pathway is conserved between yeast and mammals as U1 and U2 snRNPs associate with the pre-mRNA prior to U5 and U4/U6 snRNPs. In yeast, U1 snRNP-pre-mRNA complexes are the first splicing complexes visualized on native gels, and association with U1 snRNP apparently commits pre-mRNA to the spliceosome assembly pathway. The current study addresses U2 snRNP addition to commitment complexes. We show that commitment complex formation is relatively slow and does not require ATP, whereas U2 snRNP adds to the U1 snRNP complexes in a reaction that is relatively fast and requires ATP or hydrolyzable ATP analogs. In vitro spliceosome assembly was assayed in extracts derived from strains containing several U1 sRNA mutations. The results were consistent with a critical role for U1 snRNP in early complex formation. A mutation that disrupts the base-pairing between the 5' end of U1 snRNA and the 5' splice site allows some U2 snRNP addition to bypass the ATP requirement, suggesting that ATP may be used to destabilize certain U1 snRNP:pre-mRNA interactions to allow subsequent U2 snRNP addition.  相似文献   

18.
Interactions of the yeast U6 RNA with the pre-mRNA branch site.   总被引:6,自引:5,他引:1       下载免费PDF全文
The small nuclear RNA (snRNA) components of the spliceosome have been proposed to catalyze the excision of introns from nuclear pre-mRNAs. If this hypothesis is correct, then the snRNA components of the spliceosome may interact directly with the reactive groups of pre-mRNA substrates. To explore this possibility, a genetic screen has been used to identify potential interactions between the U6 RNA and the pre-mRNA branch site. Notably, the selection yielded mutants in two regions of the yeast U6 RNA implicated previously in the catalytic events of splicing. These mutants significantly increase the splicing of pre-mRNA substrates containing non-adenosine branch sites. U6 mutants in U2/U6 helix Ia show strong allele-specific interactions with the branch site nucleotide and interact with PRP16, a factor implicated previously in branch site utilization. The other mutants cluster in the intramolecular helix of U6 and suppress the effects of branch site mutations in a nonallele-specific fashion. The locations of these mutants may define positions important for binding of the U6 intramolecular helix to the catalytic core of the spliceosome.  相似文献   

19.
20.
The capacity of Watson-Crick base-pair complementarity to directinformational transactions basic to gene expression has longbeen appreciated. Among RNA molecules, it mediates mRNA-tRNAcodon-anticodon pairing and the 16S rRNA-mRNA Shine-Dalgarnointeraction. More recently, we have come to realize that therole of RNA may transcend that of intermolecular recognition,per se, to include catalysis. Following the tour-de-force studiesof the self-splicing Tetrahymena rRNA precursor, the stage isnow set for the primary role of RNA to be revealed in nuclearpre-RNA splicing, which is catalyzed by a large ribonucleoprotein(RNP) complex in the cell nucleus, called the spliceosome. Theremoval of introns from nuclear pre-messenger RNA (pre-mRNA)shares fundamental properties with certain RNA self-splicingreactions. It therefore seems likely that the major catalyticstrategies in nuclear pre-mRNA splicing are carried out by thesmall nuclear RNAs (snRNAs), which are major constituents ofthe spliceosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号