首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed the "shotgun polymerase chain reaction," a method for obtaining a large number of DNA markers specific to a giant DNA fragment, which facilitates analysis of a particular chromosomal region. We applied this method to a giant NotI fragment which carries the immunoglobulin lambda constant region on chromosome 22. NotI digests of chromosome 22 flow-sorted from human B-lymphoblastoid cell line GM130B were size fractionated by pulsed-field gel electrophoresis. Preliminary Southern hybridization analysis revealed that the immunoglobulin lambda constant region was conveyed on 1.4- and 1.3-Mb NotI fragments in this cell line. The agarose gel corresponding to 1.2 to 1.5 Mb in size was excised into slices and subjected to polymerase chain reaction to identify gel slices containing NotI fragments carrying Ke-Oz+, a subtype of the immunoglobulin lambda constant region. From the NotI fragment thus identified, a large number of small DNA segments were amplified through the ligation-mediated random polymerase chain reaction method. The amplified products were cloned and analyzed for chromosomal origin and localization to particular NotI fragments. Seven of eighteen clones originated from the 1.4-Mb NotI fragment of chromosome 22 in GM130B cells, which appears to be exactly the same as detected by a probe for the immunoglobulin lambda constant region.  相似文献   

2.
Etta K?fer 《Genetics》1975,79(1):7-30
Two new techniques are described for genetic mapping of reciprocal translocations in A. nidulans, which can be used to locate centromeres and meiotically unlinked markers. They both make use of unbalanced disomics from heterozygous translocation crosses. These are mainly hyperhaploids of two classes: either typical-looking n + 1 with a normal chromosome in addition to a haploid set containing the translocation, or translocation disomics. When large chromosome segments are involved, such disomics, as well as stable aneuploids and duplication types, show characteristic phenotypes and can be classified visually. The first method maps translocation breaks qualitatively, since translocated markers can be identified when translocation disomics are analyzed for heterozygous markers. The second method measures meiotic linkage of any marker to the translocation breaks when allele ratios in the balanced haploid sectors of either or both classes of disomics are determined: linked markers show reciprocal deviations from 1:1—In addition, it can be shown that frequencies of nondisjunction and recovery of specific translocation disomics both depend on the relative position of the break within a chromosome arm. Such information can provide a rough estimate of the positions of breaks for a new translocation.—Using these techniques, as well as mitotic mapping in homo- and heterozygous translocation diploids, four reciprocal translocations were mapped. From these results, information on the sequence and orientation of most of the "meiotic fragments" of the current maps (groups III, VI, VII and VIII) was obtained, and the position of the centromeres of groups VI and VII were identified. Translocation disomics are also used to map meiotically unlinked single genes, e.g. oliA of group VII, to specify chromosome segments.  相似文献   

3.
A few examples of models of chromosome aberration induction are summarised and discussed on the basis of the three main theories of aberration formation, that is "breakage-and-reunion", "exchange" and "one-hit". A model and code developed at the Universities of Milan and Pavia is then presented in detail. The model provides dose-response curves for different aberration types (dicentrics, translocations, rings, complex exchanges and deletions) induced in human lymphocytes by gamma rays, protons and alpha particles of different energies, both as monochromatic fields and as mixed fields. The main assumptions are that only clustered - and thus severe - DNA breaks ("Complex Lesions", CL) can participate in the production of aberrations, and that only break free ends in neighbouring chromosome territories can interact and form exchanges. The yields of CLs induced by the various radiation types of interest are taken from a previous modelling work. These lesions are distributed within a sphere representing the cell nucleus according to the radiation track structure, e.g. randomly for gamma rays and along straight lines for light ions. Interphase chromosome territories are explicitly simulated and configurations are obtained in which each chromosome occupies an intranuclear domain with volume proportional to its DNA content. In order to allow direct comparisons with experimental data, small fragments can be neglected since usually they cannot be detected in experiments. The presence of a background level of aberrations is also taken into account. The results of the simulations are in good agreement with experimental dose-response curves available in the literature, that provides a validation of the model both in terms of the adopted assumptions and in terms of the simulation techniques. To address the question of "true" incompleteness, simulations were also run in which all fragments were assumed to be visible.  相似文献   

4.
We have developed an easy, reliable two-step method for the insertion of large DNA fragments into any desired location in the E. coli chromosome. The method is based on the recombineering of a small (~1.3 kbp) "Landing Pad" into the chromosome at the insertion site, to which the large construct is subsequently delivered via I-SceI endonuclease excision from a donor plasmid. To demonstrate the power of this method, we here show the insertion of a fragment containing the entire lac operon (~9 kbp) into four predefined novel locations in the E. coli chromosome, a feat not possible with existing technologies. In addition, the chromosomal breaks induced by landing pad excision provide sufficient selective pressure that positive selection by antibiotics is unnecessary, making precise, exact insertion without extraneous sequence possible.  相似文献   

5.
Radiation hybrid (RH) mapping is based on radiation-induced chromosome breakage and analysis of chromosome segment retention or loss using molecular markers. In durum wheat (Triticum turgidum L., AABB), an alloplasmic durum line [(lo) durum] has been identified with chromosome 1D of T. aestivum L. (AABBDD) carrying the species cytoplasm-specific (scsae) gene. The chromosome 1D of this line segregates as a whole without recombination, precluding the use of conventional genome mapping. A radiation hybrid mapping population was developed from a hemizygous (lo) scsae--line using 35 krad gamma rays. The analysis of 87 individuals of this population with 39 molecular markers mapped on chromosome 1D revealed 88 radiation-induced breaks in this chromosome. This number of chromosome 1D breaks is eight times higher than the number of previously identified breaks and should result in a 10-fold increase in mapping resolution compared to what was previously possible. The analysis of molecular marker retention in our radiation hybrid mapping panel allowed the localization of scsae and 8 linked markers on the long arm of chromosome 1D. This constitutes the first report of using RH mapping to localize a gene in wheat and illustrates that this approach is feasible in a species with a large complex genome.  相似文献   

6.
Classifying genotypes into clusters based on DNA fingerprinting, and/or agronomic attributes, for studying genetic and phenotypic diversity is a common practice. Researchers are interested in knowing the minimum number of fragments (and markers) needed for finding the underlying structural patterns of diversity in a population of interest, and using this information in conjunction with the phenotypic attributes to obtain more precise clusters of genotypes. The objectives of this study are to present: (1) a retrospective method of analysis for selecting a minimum number of fragments (and markers) from a study needed to produce the same classification of genotypes as that obtained using all the fragments (and markers), and (2) a classification strategy for genotypes that allows the combination of the minimum set of fragments with available phenotypic attributes. Results obtained on seven experimental data sets made up of different plant species, number of individuals per species’ and number of markers, showed that the retrospective analysis did indeed find few relevant fragments (and markers) that best discriminated the genotypes. In two data sets, the classification strategy of combining the information on the relevant minimum fragments with the available morpho-agronomic attributes produced compact and well-differentiated groups of genotypes.  相似文献   

7.
Chromosome-mediated gene transfer (CMGT) can be used to generate fragments of human chromosomes and chromosomal maps can be constructed using these fragments. In previous experiments CMGT techniques have been limited to those regions of the genome which encode biochemically selectable markers. We have extended the regions of the human genome which can be subjected to CMGT methods by employing a cell surface antigen as a selectable marker. These experiments have been facilitated by the discovery that co-transformation of chromosomes with a plasmid bearing a biochemically selectable marker followed by selection for the marker pre-selects for cells which have incorporated chromosomal fragments. The plasmid may also integrate into the donor chromosomes and this provides, in some cases, an additional selectable marker in the chromosome fragment of interest. Using these methods we have isolated for the first time cells containing varying portions of the human Y chromosome.  相似文献   

8.
D H Xu  T Ban 《Génome》2004,47(4):660-665
Amplified fragment length polymorphism (AFLP) has proven a powerful tool for tagging genes or quantitative trait loci (QTLs) of interest in plants. However, conversion of AFLP markers into sequence-tagged site (STS) markers is technically challenging in wheat owing to the complicated nature of its genome. In this study, we developed an "extension-AFLP" method to convert AFLP markers associated with Fusarium head blight (FHB) resistance into STS markers. When an AFLP marker of interest was detected with an EcoRI+3-MseI+4-selective primer combination, the PCR product was used as a template for an additional selective amplification with four primer pairs, in which one additional selective base (either A, C, G, or T) was added to the 3' end of one of the two primers. The extended primer pair that produced the targeted band was further extended by adding each of the four selective nucleotide bases for the next round of selective amplification. Extension selective amplification was performed until the target bands became clear enough for subsequent cloning and sequencing. By using the extension-AFLP method, we successfully converted two AFLP markers located on chromosome 3BS and associated with FHB resistance into STS markers. Our results indicated that the extension-AFLP method is an efficient approach for converting AFLP markers into STS markers in wheat. The developed STS markers might be used for marker-assisted selection (MAS) for FHB resistance in wheat breeding programs.  相似文献   

9.
The aim of this article is to present a method for studying the shape of the dose and repair responses for X-ray-induced double-strand breaks (DSBs) as measured by neutral filter elution (NFE). The approach is closely related to a method we developed for the use of specific molecular size markers and used for determination of the absolute number of randomly distributed radiation-induced DSBs by pulsed-field gel electrophoresis (PFGE). Mouse leukemia L1210 cells were X-irradiated with 0-50 Gy. Samples were then evaluated both with PFGE and with NFE. Assuming that with both migration (PFGE) and elution (NFE), a heterogeneous population of double-stranded DNA fragments will start with the smallest fragments and proceed with increasingly larger fragments, it is possible to match the migration behavior of fractions of fragments smaller than a certain size to the fraction eluted at a specific time. This assumption does not exclude the possibility of DNA being sheared in the NFE filter. The yield, as determined by the size markers in PFGE, was used to find the corresponding elution times in the NFE experiment. These experimentally used elution times could then reversely be interpreted as size markers which finally were used to calculate DSBs/Mbp as a function of X-ray dose. The resulting lines were almost straight. The data were also plotted as relative elution and showed that, as expected, the dose response then appears with a more pronounced sigmoid shape.  相似文献   

10.
Integration of an external gene into a fission yeast chromosome is useful to investigate the effect of the gene product. An easy way to knock-in a gene construct is use of an integration plasmid, which can be targeted and inserted to a chromosome through homologous recombination. Despite the advantage of integration, construction of integration plasmids is energy- and time-consuming, because there is no systematic library of integration plasmids with various promoters, fluorescent protein tags, terminators and selection markers; therefore, researchers are often forced to make appropriate ones through multiple rounds of cloning procedures. Here, we establish materials and methods to easily construct integration plasmids. We introduce a convenient cloning system based on Golden Gate DNA shuffling, which enables the connection of multiple DNA fragments at once: any kind of promoters and terminators, the gene of interest, in combination with any fluorescent protein tag genes and any selection markers. Each of those DNA fragments, called a ‘module’, can be tandemly ligated in the order we desire in a single reaction, which yields a circular plasmid in a one-step manner. The resulting plasmids can be integrated through standard methods for transformation. Thus, these materials and methods help easy construction of knock-in strains, and this will further increase the value of fission yeast as a model organism.  相似文献   

11.
The genetic manipulation of cells is the most promising strategy for designing microorganisms with desired traits. The most widely used approaches for integrating specific DNA-fragments into the Escherichia coli genome are based on bacteriophage site-specific and Red/ET-mediated homologous recombination systems. Specifically, the recently developed Dual In/Out integration strategy enables the integration of DNA fragments directly into specific chromosomal loci (Minaeva et al., 2008). To develop this strategy further, we designed a method for the precise cloning of any long DNA fragments from the E. coli chromosome and their targeted insertion into the genome that does not require PCR. In this method, the region of interest is flanked by I-SceI rare-cutting restriction sites, and the I-SceI-bracketed region is cloned into the unique I-SceI site of an integrative plasmid vector that then enables its targeted insertion into the E. coli chromosome via bacteriophage φ80 Int-mediated specialized recombination. This approach allows any long specific DNA fragment from the E. coli genome to be cloned without a PCR amplification step and reproducibly inserted into any chosen chromosomal locus. The developed method could be particularly useful for the construction of marker-less and plasmid-less recombinant strains in the biotechnology industry.  相似文献   

12.
A mathematical model for nonrandom generalized transduction is proposed and analyzed. The model takes into account the finite number of transducing particle classes for any given marker. The equations for estimation of the distance between markers from contransduction frequency data are derived and standard errors of the estimates are given. The obtained relationships depend significantly on the number of classes of transducing fragments. The model was applied to estimate the number of transducing fragment classes for a given marker in transduction with phage P22 of Salmonella typhimurium. It was found that the literature data on frequencies of contransduction in crosses with mutual substitution of selective and nonselective markers can be rationalized most accurately by assuming that the mean number of classes is equal to 2. An improved method for analysis of cotransduction data is proposed on the basis of our model and the results of calculation. The method relies on solving a set of algebraic equations for cotransduction frequencies of markers located within one phage length. The method allows a relatively precise determination of distances between markers, positions of transducing particle ends and deletion or insertion lengths. The approach is applied to the trp-cysB-pyrF and aroC-hisT-purF-dhuA regions of the Salmonella typhimurium chromosome.  相似文献   

13.
To facilitate identification of additional DNA markers near and on opposite sides of the Huntington disease (HD) gene, we developed a panel of somatic-cell hybrids that allows accurate subregional mapping of DNA fragments in the distal portion of 4p. By means of the hybrid-cell mapping panel and a library of DNA fragments enriched for sequences from the terminal one-third of the short arm of chromosome 4, 105 DNA fragments were mapped to six different physical regions within 4p15-4pter. Four polymorphic DNA fragments of particular interest were identified, at least three of which are distal to the HD-linked D4S10 (G8) locus, a region of 4p previously devoid of DNA markers. Since the HD gene has also recently been shown to be distal to G8, these newly identified DNA markers are in the direction of the HD gene from G8, and one or more of them may be on the opposite side of HD from G8.  相似文献   

14.
The presence of a monosomic gametocidal chromosome (GC) in a barley chromosome addition line of common wheat generates structural aberrations in the barley chromosome as well as in the wheat chromosomes of gametes lacking the GC. A collection of structurally aberrant barley chromosomes is analogous to a panel of radiation hybrid (RH) mapping and is valuable for high-throughput physical mapping. We developed 90 common wheat lines (GC lines) containing aberrant barley 7H chromosomes induced by a gametocidal chromosome, 2C. DNAs isolated from these GC lines provided a panel of 7H chromosomal fragments in a wheat genetic background, comparable with RH mapping panels in mammals. We used this 7H GC panel and the methodology for RH mapping to physically map PCR-based barley markers, SSRs and AFLPs, onto chromosome 7H, relying on polymorphism between the 7H chromosome and the wheat genome. We call this method GC mapping. This study describes a novel adaptation and combination of methods of inducing chromosomal rearrangements to produce physical maps of markers. The advantages of the presented method are similar to RH mapping in that non-polymorphic markers can be used and the mapping panels can be relatively easily obtained. In addition, mapping results are cumulative when using the same mapping set with new markers. The GC lines will be available from the National Bioresources Project-KOMUGI (). Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
Based on a common biological phenomenon - homologous recombination - a novel method was developed by transferring chromosome DNA fragments extracted from multiple donor cells into a host strain. Through this method of transferring DNA fragments, foreign DNA fragments are introduced into one host cell and multiple positive traits from multiple strains may be integrated into the host strain. We first confirmed its feasibility in both prokaryotic and eukaryotic cells by selecting reverse mutants to prototrophy from auxotrophic strains through receiving chromosomal DNA fragments of wild-type parental strains. We then applied this method to Saccharomyces cerevisiae to improve its ethanol and temperature tolerance. We introduced donor chromosome DNA fragments from different S. cerevisiae strains with improvements in ethanol or temperature tolerance into a common strain S. cerevisiae and obtained a strain with much superior ethanol and temperature tolerance. The results showed that the Transferring DNA Fragments method provides a new way for strain breeding.  相似文献   

16.
M I Mosevitski? 《Genetika》1978,14(7):1127-1145
Three basic versions for the formation of circularly permuted and terminally redundant chromosomes with rings, concatemers, or fragments as replicative intermediates were considered. Experimental results show that the chromosome of T-even phage can turn into 4-6 large fragments soon after it penetrates inside the Escherichia coli cell. The fragments are capable for autonomous replication and contribute their material to progeny phage chromosomes. These results confirm the suggestion that circularly permuted and terminally redundant chromosomes of T-even phages are made of fragments. A theoretical analysis of different modes of parental chromosome fragments formation, autonomous replication and ordered association was carried out. In particular, it was emphasized that at a low multiplicity of infection the reassociation of fragments by means of recombination can be accomplished only if breaks in complementary strands of the parental chromosome were made with a shift for about 3000 nucleotides. Complexity is a feature of linear chromosomes that ensures their reproduction without defects at the ends.  相似文献   

17.
BACKGROUND: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. RESULTS: Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. CONCLUSIONS: These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.  相似文献   

18.
A micronucleus test method to assess radiation-induced chromosomal damage in human spermatozoa is described, and its efficiency examined by comparison with that of sperm chromosome analysis. Human spermatozoa were exposed in vitro to 1.11 and 2.13 Gy of 137Cs gamma-rays at a dose rate of 1.36 Gy/min. After interspecific in vitro fertilization of irradiated spermatozoa with zona-free hamster oocytes, a total of 193 monospermic eggs were examined with the micronucleus test at the 2-cell stage, and a total of 304 male pronuclear chromosome plates were analyzed according to our established method. The incidence of 2-cell embryos with micronuclei coincided well with the incidence of spermatozoa with chromosomal breaks and fragments (51.6% vs. 50.3% in the 1.11-Gy group and 82.7% vs. 79.3% in the 2.13-Gy group). A similar correlation was also found between the number of micronuclei per embryo and the number of breaks and fragments per spermatozoon (0.85 vs. 0.88 and 1.50 vs. 1.45 in the 2 dose groups, respectively). These results indicate that our micronucleus test is useful as a simple and rapid method for assessing the clastogenic effects of various environmental mutagens on human sperm chromosomes.  相似文献   

19.
A recently developed PCR-fingerprinting method, the so-called DIR (diverged inverted repeats)-PCR, was used for quick search for molecular markers of Bacillus thuringiensis subspecies carrying the cry1 genes. The analysis of the fingerprints obtained by this method made it possible to reveal PCR fragments characteristic of the subspecies that produce proteins toxic for insects of the order Lepidoptera. Cloning and sequencing of these fragments allowed systems of SCAR (sequence characterized amplified region) primers to be designed, which are specific to the above group of B. thuringiensis strains. Comparison of the specific fragments with sequences available in the GenBank database revealed their homology with the rpoC gene family and the adjacent spacer region, suggesting chromosomal localization of these markers. This increases the reliability of the designed system of SCAR primers, because plasmids may be lost or transferred by transformation between closely related strains. It was demonstrated that the DIR-PCR method allows markers to be developed that are linked to diagnostic genotypic and phenotypic characteristics of bacteria.  相似文献   

20.
Development of the procedure to stimulate peripheral blood lymphocytes has greatly facilitated the understanding of chromosome aberration formation and repair mechanisms in human cells. Yet, because radiation induces far more initial chromosome breaks than are observed as aberrations in metaphase, it has not been possible to examine the kinetics of primary chromosome breakage and rejoining with this procedure. An improved method to induce premature chromosome condensation in unstimulated lymphocytes has been used to study primary chromosome breakage, rejoining, and ring formation at various times after irradiation with up to 800 rad of X-rays. The dose-response relations for chromosome fragments analyzed immediately or 1, 2, or 24 h after exposure were found to be linear. Rapid rejoining of chromosome fragments, which takes place in the first 3 h after X-ray exposure, was not correlated with a simultaneous increase in the formation of rings. The yield of rings per cell scored 24 h after irradiation, however, increased significantly and fit a linear quadratic equation. Both chromosome fragment rejoining and ring formation were completed about 6 h after irradiation. The frequency distributions of rings among cells followed a Poisson distribution, whereas chromosome fragments were overdispersed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号