首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retroviral aspartyl proteases are homodimeric, whereas eukaryotic aspartyl proteases tend to be large, monomeric enzymes with 2-fold internal symmetry. It has been proposed that contemporary monomeric aspartyl proteases evolved by gene duplication and fusion from a primordial homodimeric enzyme. Recent sequence analyses have suggested that such "fossil" dimeric aspartyl proteases are still encoded in the eukaryotic genome. We present evidence for retention of a dimeric aspartyl protease in eukaryotes. The X-ray crystal structure of a domain of the Saccharomyces cerevisiae protein Ddi1 shows that it is a dimer with a fold similar to that of the retroviral proteases. Furthermore, the double Asp-Thr-Gly-Ala amino acid sequence motif at the active site of HIV protease is found with identical geometry in the Ddi1 structure. However, the putative substrate binding groove is wider in Ddi1 than in the retroviral proteases, suggesting that Ddi1 accommodates bulkier substrates. Ddi1 belongs to a family of proteins known as the ubiquitin receptors, which have in common the ability to bind ubiquitinated substrates and the proteasome. Ubiquitin receptors contain an amino-terminal ubiquitin-like (UBL) domain and a carboxy-terminal ubiquitin-associated (UBA) domain, but Ddi1 is the only representative in which the UBL and UBA domains flank an aspartyl protease-like domain. The remarkable structural similarity between the central domain of Ddi1 and the retroviral proteases, in the global fold and in active-site detail, suggests that Ddi1 functions proteolytically during regulated protein turnover in the cell.  相似文献   

2.
Proteolytic processing of Ty3 proteins is required for transposition.   总被引:18,自引:7,他引:11       下载免费PDF全文
Ty3 is a retroviruslike element found in Saccharomyces cerevisiae. It encodes GAG3 and GAG3-POL3 polyproteins which are processed into mature proteins found in the Ty3 viruslike particle. In this study, the region encoding a protease that is homologous to retroviral aspartyl proteases was identified and shown to be required for production of mature Ty3 proteins and transposition. The Ty3 protease has the Asp-Ser-Gly consensus sequence found in copia, Ty1, and Rous sarcoma virus proteases, rather than the Asp-Thr-Gly found in most retroviral proteases. The Asp-Ser-Gly consensus is flanked by residues similar to those which flank the active sites of cellular aspartyl proteases. Mutations were made in the Ty3 active-site sequence to examine the role of the protease in Ty3 particle maturation and to test the functional significance of the Ser active-site variant in the consensus sequence. Mutation of the active-site Asp blocked processing of Gag3 and Gag3-Pol3 and allowed identification of a GAG3-POL3 polyprotein. This protein was turned over rapidly in cells expressing the mutant Ty3. Changing the active-site Ser to Thr caused only a modest reduction in the levels of certain Ty3 proteins. Five putative cleavage sites of this protease in Ty3 GAG3 and GAG3-POL3 polyproteins were defined by amino-terminal sequence analysis. The existence of an additional protein(s) of unknown function, encoded downstream of the protease-coding region, was deduced from the positions of these amino termini and the sizes of known Ty3 proteins. Although Ty3 protease cleavage sites do not correspond exactly to known retroviral protease cleavage sites, there are similarities. Residues P3 through P2' in the regions encompassing each of the five sites are uncharged, and no P1 position is occupied by an amino acid with a branched beta carbon.  相似文献   

3.
Crude homogenates of the nematode Caenorhabditis elegans exhibit maximal proteolytic activity under acidic pH conditions. About 90% of this activity is inhibited by the oligopeptide pepstatin, which specifically inhibits the activity of aspartyl proteases such as pepsin, cathepsins D and E or renin. We have purified enzymes responsible for this proteolytic activity by a single-step affinity chromatography on pepstatin-agarose. Analysis of the purified fraction by 1D SDS gel electrophoresis revealed six bands ranging from 35 to 52 kDa. After electrotransfer to poly(vinylidene difluoride) membranes, all bands were successfully subjected to N-terminal microsequencing. On 2D gels, the purified protein bands split into 19 spots which, after renewed microsequencing, were identified as isoelectric variants of the six proteins already described. The N-termini obtained for these proteins could be correlated to genomic DNA sequences determined in the course of the C. elegans genome sequencing project. All these sequences were predicted to code for expressed proteins as collected in the WORMPEP database. Five of the six coding sequences identified in this study were found to contain the typical active-site consensus sequence of aspartyl proteases and displayed an overall amino acid identity between 25 and 66% as compared to aspartyl proteases from other organisms. In addition to the five aspartyl proteases detected at the protein level, we have identified the coding sequences for seven other enzymes of this protease family by a similarity search in the genomic DNA of C. elegans which has recently been completely sequenced.  相似文献   

4.
Trichoderma harzianum is a soil-borne filamentous fungus that exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. The production of hydrolytic enzymes appears to be a key element in the parasitic process. Among the enzymes released by Trichoderma, the aspartic proteases play a major role. A gene (SA76) encoding an aspartic protease was cloned by 3' rapid amplification of cDNA ends from T. harzianum T88. The coding region of the gene is 1,593 bp long, encoding a polypeptide of 530 amino acids with a predicted molecular mass 55 kDa and a pI of 4.5. The catalytic aspartic residues characteristic of aspartic proteases are conserved with an active-site motif (DSG); however, the DSG in the N-terminal lobe is unusual in that Ser replaced Thr. Northern blot analysis indicated that SA76 was induced in response to different fungal cell walls. Aspartic protease SA76 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (10.5 U mL(-1)) 72 h after induction with galactose. The temperature optimum of the enzyme was 45 degrees C and its pH optimum was 3.5. The culture supernatant of the S. cerevisiae strain that expressed the aspartic protease SA76 was able to inhibit the growth of five phytopathogenic fungi. The inhibition of mycelial growth varied between 7% and 38%.  相似文献   

5.
The mutation Ala28 to serine in human immunodeficiency virus, type 1, (HIV-1) protease introduces putative hydrogen bonds to each active-site carboxyl group. These hydrogen bonds are ubiquitous in pepsin-like eukaryotic aspartic proteases. In order to understand the significance of this difference between HIV-1 protease and homologous, eukaryotic aspartic proteases, we solved the three-dimensional structure of A28S mutant HIV-1 protease in complex with a peptidic inhibitor U-89360E. The structure has been determined to 2.0 A resolution with an R factor of 0.194. Comparison of the mutant enzyme structure with that of the wild-type HIV-1 protease bound to the same inhibitor (Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J, 1996, Biochemistry 35:10627-10633) revealed double occupancy for the Ser28 hydroxyl group, which forms a hydrogen bond either to one of the oxygen atoms of the active-site carboxyl or to the carbonyl oxygen of Asp30. We also observed marked changes in orientation of the Asp25 catalytic carboxyl groups, presumably caused by the new hydrogen bonds. These observations suggest that catalytic aspartyl groups of HIV-1 protease have significant conformational flexibility unseen in eukaryotic aspartic proteases. This difference may provide an explanation for some unique catalytic properties of HIV-1 protease.  相似文献   

6.
7.
Secretion of proteolytic and chitinolytic enzymes is a hallmark of infection processes of Metarhizium anisopliae in response to host (insect) cuticular signals. The regulation of these enzymes (subtilisin-like proteases [Pr1a and Pr1b], trypsin-like proteases [Pr2], metalloproteases, aspartyl proteases, aminopeptidase, and chitinases) and a hydrophobin was investigated by Northern analysis and/or enzyme assay. The production of each enzyme showed a differential expression pattern in response to ambient pH; enzymes were synthesized only at pHs at which they function effectively, irrespective of whether the medium contained an inductive cuticle substrate. Three aspartyl proteases (pH optimum, 3), and chitinase (pH optimum, 5) showed maximal accumulation at acidic pHs. The highest level of aminopeptidase (pH optimum, 7) was detected at pH 7. The highest levels of five metalloproteases (pH optima, ca. 7) were detected over the pH range 6 to 8. Two trypsins and several subtilisin-like Pr1 isoforms with pH optima of ca. 8 were produced only under alkaline conditions. Northern analysis of RNA species corresponding to seven cDNA sequences encoding proteases and chitinase confirmed that the ambient pH played a major role in gene expression of secreted proteins. Hydrophobin was expressed almost equally at pHs 5 and 8 but was not expressed at pH 3. During fungal penetration, the pH of infected cuticle rises from about 6.3 to 7.7. Consistent with pH regulation of enzyme production, serine and metalloproteases were produced in situ during infection, but no production of aspartyl proteases was found. We propose that the alkalinity of infected cuticle represents a physiological signal that triggers the production of virulence factors.  相似文献   

8.
Endoproteolysis of beta-amyloid precursor protein (betaAPP) and Notch requires conserved aspartate residues in presenilins 1 and 2 (PS1 and PS2). Although PS1 and PS2 have therefore been proposed to be aspartyl proteases, no homology to other aspartyl proteases has been found. Here we identify homology between the presenilin active site and polytopic aspartyl proteases of bacterial origin, thus supporting the hypothesis that presenilins are novel aspartyl proteases.  相似文献   

9.
Trichoderma asperellum and cucumber seedlings were used as a model to study the modulation of Trichoderma gene expression during plant root colonization. Seedlings were grown in an aseptic hydroponics medium and inoculated with Trichoderma spore suspension. Proteins differentially secreted into the medium were isolated. Three major proteins of fungal origin were identified: two arabinofuranosidases (Abf1 and Abf2) and an aspartyl protease. Differential mRNA display was conducted on Trichoderma mycelia interacting and non-interacting, with the plant roots. Among the differentially regulated clones another aspartyl protease was identified. Sequencing of the genes revealed that the first aspartyl protease is a close homologue of PapA from T. harzianum and the other, of AP1 from Botryotinia fuckeliana. RT-PCR analysis confirms that the proteases are induced in response to plant roots attachment and are expressed in planta. papA, but not papB, is also induced in plate confrontation assays with the plant pathogen Rhizoctonia solani. These data suggest that the identified proteases play a role in Trichoderma both as a mycoparasite and as a plant opportunistic symbiont.  相似文献   

10.
Digestive proteases of the phytophagous mite Tetranychus urticae have been characterised by comparing their activity in body and faecal extracts. Aspartyl, cathepsin B- and L-like and legumain activities were detected in both mite bodies and faeces, with a specific activity of aspartyl and cathepsin L-like proteases about 5- and 2-fold higher, respectively, in mite faeces than in bodies. In general, all these activities were maintained independently of the host plant where the mites were reared (bean, tomato or maize). Remarkably, this is the first report in a phytophagous mite of legumain-like activity, which was characterised for its ability to hydrolyse the specific substrate Z-VAN-AMC, its activation by DTT and inhibition by IAA but not by E-64. Gel free nanoLC–nanoESI-QTOF MS/MS proteomic analysis of mite faeces resulted in the identification of four cathepsins L and one aspartyl protease (from a total of the 29 cathepsins L, 27 cathepsins B, 19 legumains and two aspartyl protease genes identified the genome of this species). Gene expression analysis reveals that four cathepsins L and the aspartyl protease identified in the mite faeces, but also two cathepsins B and two legumains that were not detected in the faeces, were expressed at high levels in the spider mite feeding stages (larvae, nymphs and adults) relative to embryos. Taken together, these results indicate a digestive role for cysteine and aspartyl proteases in T. urticae. The expression of the cathepsins B and L, legumains and aspartyl protease genes analysed in our study increased in female adults after feeding on Arabidopsis plants over-expressing the HvCPI-6 cystatin, that specifically targets cathepsins B and L, or the CMe trypsin inhibitor that targets serine proteases. This unspecific response suggests that in addition to compensation for inhibitor-targeted enzymes, the increase in the expression of digestive proteases in T. urticae may act as a first barrier against ingested plant defensive proteins.  相似文献   

11.
The Escherichia coli tls-1 strain carrying a mutated aspS gene (coding for aspartyl-tRNA synthetase), which causes a temperature-sensitive growth phenotype, was cloned by PCR, sequenced, and shown to contain a single mutation resulting in substitution by serine of the highly conserved proline 555, which is located in motif 3. When an aspS fragment spanning the codon for proline 555 was transformed into the tls-1 strain, it was shown to restore the wild-type phenotype via homologous recombination with the chromosomal tls-1 allele. The mutated AspRS purified from an overproducing strain displayed marked temperature sensitivity, with half-life values of 22 and 68 min (at 42 degrees C), respectively, for tRNA aminoacylation and ATP/PPi exchange activities. Km values for aspartic acid, ATP, and tRNA(Asp) did not significantly differ from those of the native enzyme; thus, mutation Pro555Ser lowers the stability of the functional configuration of both the acylation and the amino acid activation sites but has no significant effect on substrate binding. This decrease in stability appears to be related to a conformational change, as shown by gel filtration analysis. Structural data strongly suggest that the Pro555Ser mutation lowers the stability of the Lys556 and Thr557 positions, since these two residues, as shown by the crystallographic structure of the enzyme, are involved in the active site and in contacts with the tRNA acceptor arm, respectively.  相似文献   

12.
Processing of antigens by proteases in the endocytic compartments of antigen presenting cells (APC) is essential to make them suitable for presentation as antigenic peptides to T lymphocytes. Several proteases of the cysteine, aspartyl and serine classes are involved in this process. It has been speculated, that the aspartyl protease cathepsin E (CatE) is involved in antigen processing in B cell line, monocyte-derived dendritic cells (DC) and murine DC. Here we show the expression of CatE in primary human B cells and DC, which was only elevated in B cells after induction with phorbol 12-myristate 13-acetate (PMA), resulted in enhanced presentation of tetanus toxin C-fragment (TTC) to the respective T cells. Inhibition of aspartyl proteases using pepstatin-A-penetratin (PepA-P), a highly efficient, cell-permeable aspartyl protease inhibitor, reduced significantly T cell activation in PMA activated B cells but not in PMA activated myeloid DC (mDC). Thus we suggest that CatE is important in the processing of TTC in primary human B cells.  相似文献   

13.
We have recently developed a fast approach to comparisons of 3-dimensional structures. Our method is unique, treating protein structures as collections of unconnected points (atoms) in space. It is completely independent of the amino acid sequence order. It is unconstrained by insertions, deletions, and chain directionality. It matches single, isolated amino acids between 2 different structures strictly by their spatial positioning regardless of their relative sequential position in the amino acid chain. It automatically detects a recurring 3D motif in protein molecules. No predefinition of the motif is required. The motif can be either in the interior of the proteins or on their surfaces. In this work, we describe an enhancement over our previously developed technique, which considerably reduces the complexity of the algorithm. This results in an extremely fast technique. A typical pairwise comparison of 2 protein molecules requires less than 3 s on a workstation. We have scanned the structural database with dozens of probes, successfully detecting structures that are similar to the probe. To illustrate the power of this method, we compare the structure of a trypsin-like serine protease against the structural database. Besides detecting homologous trypsin-like proteases, we automatically obtain 3D, sequence order-independent, active-site similarities with subtilisin-like and sulfhydryl proteases. These similarities equivalence isolated residues, not conserving the linear order of the amino acids in the chains. The active-site similarities are well known and have been detected by manually inspecting the structures in a time-consuming, laborious procedure. This is the first time such equivalences are obtained automatically from the comparison of full structures. The far-reaching advantages and the implications of our novel algorithm to studies of protein folding, to evolution, and to searches for pharmacophoric patterns are discussed.  相似文献   

14.
In this study, the dipeptidyl peptidase IV (DPP IV) of the swine pathogen Streptococcus suis was cloned, overexpressed in Escherichia coli, and characterized. The coding region comprises 2,268 nucleotides containing an open reading frame that codes for a 755-amino-acid protein with a calculated molecular mass of 85 kDa. The amino acid sequence contained the sequence Gly-X-Ser-X-X-Gly, which is a consensus motif flanking the active-site serine shared by serine proteases. The recombinant DPP IV showed a high affinity for the synthetic peptide glycine-proline-p-nitroanilide and was strongly inhibited by Hg2+ and diprotin A.  相似文献   

15.
16.
Secretion of recombinant proteins is a common strategy for heterologous protein expression using the yeast Kluyveromyces lactis. However, a common problem is degradation of a target recombinant protein by secretory pathway aspartyl proteases. In this study, we identified five putative pfam00026 aspartyl proteases encoded by the K. lactis genome. A set of selectable marker-free protease deletion mutants was constructed in the prototrophic K. lactis GG799 industrial expression strain background using a PCR-based dominant marker recycling method based on the Aspergillus nidulans acetamidase gene (amdS). Each mutant was assessed for its secretion of protease activity, its health and growth characteristics, and its ability to efficiently produce heterologous proteins. In particular, despite having a longer lag phase and slower growth compared with the other mutants, a Δyps1 mutant demonstrated marked improvement in both the yield and the quality of Gaussia princeps luciferase and the human chimeric interferon Hy3, two proteins that experienced significant proteolysis when secreted from the wild-type parent strain.  相似文献   

17.
The C gene products of all mammalian hepadnaviruses contain a region with sequence similarities to the catalytic center of the aspartyl proteases. This region could have the capacity to cleave precore proteins, leading to the synthesis of e antigen. By site-directed mutagenesis on a plasmid containing the hepatitis B virus C gene, we have replaced either the Asp residue of the putative aspartyl protease catalytic center or an Asp residue located 3 amino acids upstream. Transient expression of the mutated hepatitis B virus C gene in human and mouse cells showed that none of these mutations prevented the secretion of an accurately processed HBe antigen. Thus, we demonstrated that the aspartyl protease responsible for e antigen precursor processing is not C gene encoded but is more likely to be a cellular enzyme. From these results, we suggest a model for the mechanism of e antigen synthesis.  相似文献   

18.
The crystal structure of the aspartyl protease encoded by the gene pol of the human immunodeficiency virus (HIV-1, isolate BRU) has been determined to 2.7 A resolution. The enzyme, expressed as an insoluble denatured polypeptide in inclusion bodies of Escherichia coli has been renatured and crystallized. It differs by several amino acid replacements from the homologous enzymes of other HIV-1 isolates. A superposition of the C alpha-backbone of the BRU protease with that of the SF2 protease gives a roots mean square positional difference of 0.45 A. Thus, neither the denaturation/renaturation process nor the amino acid replacements have a noticeable effect on the three-dimensional structure of the BRU protease or on the detailed conformation of the catalytic site, which is very similar to that of other aspartyl proteases.  相似文献   

19.
The pepsin-like aspartyl proteases consist of a single polypeptide chain with topologically similar amino- and carboxyl-terminal domains, each of which contributes 1 aspartic acid residue to the active site. This structure has been proposed to have evolved by gene duplication and fusion from a dimeric enzyme composed of two identical polypeptide chains, such as the aspartyl protease (PRT) of human immunodeficiency virus type 1 (HIV-1). To determine if a single polypeptide form of the HIV-1 protease would be enzymatically active, two protease coding regions were linked to form a dimeric gene (pFGGP). Expression of this gene in Escherichia coli yielded a protein with the expected molecular mass of 22 kDa. The in vitro kinetic parameters of PRT and FGGP (where FGGP is the single polypeptide form of the HIV-1 protease with 2 glycine residues connecting the two subunits) for three peptide substrates are similar. Construction and analysis of a CheY-GAG-FGGP fusion protein demonstrated that FGGP is capable of precursor processing in vivo. Mutation of one or both of the active site aspartates to either asparagine or glutamate rendered the enzyme inactive, demonstrating that both active site aspartate residues are required for enzymatic activity.  相似文献   

20.
The Alzheimer's disease-associated beta-amyloid peptide is produced through cleavage of amyloid precursor protein by beta-secretase and gamma-secretase. gamma-Secretase is a complex containing presenilin (PS) as the catalytic component and three essential cofactors: Nicastrin, anterior pharynx defective (APH-1) and presenilin enhancer-2 (PEN-2). PS and signal peptide peptidase (SPP) define a novel family of aspartyl proteases that cleave substrates within the transmembrane domain presumptively using two membrane-embedded aspartic acid residues for catalysis. Apart from the two aspartate-containing active site motifs, the only other region that is conserved between PS and SPP is a PAL sequence at the C-terminus. Although it has been well documented that this motif is essential for gamma-secretase activity, the mechanism underlying such a critical role is not understood. Here we show that mutations in this motif affect the conformation of the active site of gamma-secretase resulting in a complete loss of PS binding to a gamma-secretase transition state analog inhibitor, Merck C. Analogous mutations in SPP significantly inhibit its enzymatic activity. Furthermore, these mutations also abolish SPP binding to Merck C, indicating that SPP and gamma-secretase share a similar active site conformation, which is dependent on the PAL motif. Exploring the amino acid requirements within this motif reveals a very small side chain requirement, which is conserved during evolution. Together, these observations strongly support the hypothesis that the PAL motif contributes to the active site conformation of gamma-secretase and of SPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号