首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of granaticin, a polyketide-derived antibiotic synthesized as a secondary metabolite by Streptomyces thermoviolaceus strain NCIB 10076, was studied at different growth temperatures. Quantitative measurements of the antibiotic made during batch fermentations showed that the yield was greatest at 45 degrees C, whereas the rate of synthesis was most rapid at 37 degrees C. The timing of the appearance of granaticin in culture could not be assigned to any particular phase of growth or to de-repression due to depletion of any particular nutrient. However, at all temperatures, appearance of the antibiotic coincided with a rise in ammoniacal nitrogen presumably due to deamination of glutamate, the carbon source for growth. We have previously shown that production of the antibiotic is pH sensitive and that some carbon sources result in higher titres than others. This paper examines the effect of temperature on the physiology of growth and on antibiotic production in more detail under conditions that also allow an exact measurement of granaticin yield.  相似文献   

2.
Production of secondary metabolites was investigated in the thermophilic streptomyceteStreptomyces thermoviolaceus grown at 45°C in a fermenter. Extracellular protein was secreted into the culture medium at the same time as an antibiotic granaticin; both were synthesized during the second slower phase of biphasic growth, which is most apparent at 45°C for this organism. Protease, assayed as azocaseinase, was identified as one component of, and marker for, the excreted protein. The effects of different growth temperatures revealed that the synthesis of extracellular protein, like that of the antibiotic, was maximal in cultures grown between 37° and 45°C, whereas protease activity was greatest in 50°C grown cultures. A method was devised, based on acetone precipitation, for concentrating the protease activity from culture supernatants. Characterization of the concentrated activity using inhibitors suggested the presence of a serine and a metallo-type protease. A peptide substrate specific for the metallo-protease showed that it had a pH optimum for activity of 6.5–7.0. Approximately 50% of the activity was lost after 80 min of incubation at 70°C. Although calcium (5 mM) promoted increased thermotolerance such that around 65% of the activity remained after 100 min at 70°C, it seems that manganese and/or zinc may be more important for enzyme activity.  相似文献   

3.
Physiological regulation of extracellular lipase activity by a newly-isolated, thermotolerant strain of Pseudomonas aeruginosa (strain EF2) was investigated by growing the organism under various conditions in batch, fed-batch and continuous culture. Lipase activity, measured as the rate of olive oil (predominantly triolein) hydrolysis, was weakly induced by general carbon and/or energy limitation, strongly induced by a wide range of fatty acyl esters including triglycerides, Spans and Tweens, and repressed by long-chain fatty acids including oleic acid. The highest lipase activities were observed during the stationary phase of batch cultures grown on Tween 80, and with Tween 80-limited fed-batch and continuous cultures grown at low specific growth rates. The lipase activity of Tween 80-limited continuous cultures was optimized with respect to pH and temperature using response surface analysis; maximum activity occurred during growth at pH 6.5, 35.5 degrees C, at a dilution rate of 0.04 h-1. Under these conditions the culture exhibited a lipase activity of 39 LU (mg cells)-1 and a specific rate of lipase production (qLipase) of 1.56 LU (mg cells)-1 h-1 (1 LU equalled 1 mumol fatty acid released min-1). Esterase activity, measured with p-nitrophenyl acetate as substrate, varied approximately in parallel with lipase activity under all growth conditions, suggesting that a single enzyme may catalyse both activities.  相似文献   

4.
Spironucleus vortens were cultivated in either an artificial medium at different temperatures, or in medium at various pH conditions or supplemented with different bile concentrations at 25 degrees C. Temperature, pH and bile requirements for the optimal growth of the parasite were determined. Parasites multiplied quickly at 28 and 31 degrees C and reached maximum numbers on Day 4 of cultivation, whereafter they did not survive. At 25 degrees C, parasites survived longer than those at 28 and 31 degrees C with no difference in multiplication rate during the exponential phase. The longest survival period was seen at 22 degrees C, although the growth rate of the parasite was not as high as those at 25 degrees C. At a higher temperature of 37 degrees C, no parasites were observed alive after the second day of cultivation. Optimal pH range for the parasite's growth was 6.5 to 7.5, with the highest cell number at pH 7.5. Parasites survived longest (15 d) at pH 6.0, although the maximum number of cells was lower than those at the optimal pH. Parasites were dead within 24 h at pH levels above 8.5 or below 5.5. All cultures supplemented with either bovine or fish bile yielded numbers of parasites lower than cultures with no bile. In addition, parasite growth was significantly suppressed in medium supplemented with higher concentrations of bile. These results indicate that the optimal condition for the in vitro cultivation of S. vortens is 25 degrees C and pH 6.5 to 7.5 without supplementation with bile.  相似文献   

5.
Isolation and identification of a morpholine-degrading bacterium   总被引:2,自引:0,他引:2  
A gram-positive, slowly growing rod effectively utilizing morpholine as the sole source of organic carbon, nitrogen, and energy was isolated from a mixed culture in a laboratory reactor. The strain was tentatively identified as Mycobacterium aurum. Its growth characteristics at 20 degrees C and pH 6.5 were as follows: maximum specific growth rate, 0.052 h-1; half-velocity constant, 1.3 mg/liter; and yield, 0.37 g/g. The optimum temperature and pH were 31 degrees C and 6.0, respectively.  相似文献   

6.
Isolation and identification of a morpholine-degrading bacterium.   总被引:4,自引:1,他引:3       下载免费PDF全文
A gram-positive, slowly growing rod effectively utilizing morpholine as the sole source of organic carbon, nitrogen, and energy was isolated from a mixed culture in a laboratory reactor. The strain was tentatively identified as Mycobacterium aurum. Its growth characteristics at 20 degrees C and pH 6.5 were as follows: maximum specific growth rate, 0.052 h-1; half-velocity constant, 1.3 mg/liter; and yield, 0.37 g/g. The optimum temperature and pH were 31 degrees C and 6.0, respectively.  相似文献   

7.
Summary In a mineral salts medium containing yeast extract, NH4Cl and glucose (50g/L), the pH range producing the fastest growth ofZ. mobilis was 5.5–6.5 with an apparent optimum at 6.5. At constant growth rate of 0.15hr–1, the specific rates of glucose utilization (qs) and ethanol production (qp) were relatively unaffected by pH over the range 7.0–5.5 but increased sharply as the pH was further decreased below 5.5 to 4.0. Under these conditions the ethanol yield was unaffected by pH over the range 4.0–6.5 but decreased markedly at pH of 7.  相似文献   

8.
聚丙烯腈纤维固定化青霉素酰化酶合成头孢氨苄的研究   总被引:4,自引:0,他引:4  
将巨大芽孢杆菌胞外青霉素酰化酶通过共价键结合到聚丙烯腈纤维的衍生物上。制成的丝状固定化青霉素酰化酶表现活力达 1 5 3U g(湿重 )。固定化酶合成头孢氨苄的最适pH为 6 5 ,最适温度为 40℃。 7 ADCA的投料浓度以 4%为好 ,7 ADCA与PGME的投料量比率为1∶2 ,最佳用酶量为 1 70U g 7 ADCA。在pH6 5、温度 3 0℃时 ,固定化酶对 7 ADCA的表观米氏常数K7 ADCA为 0 1 6 2mol L ,对PGME的表观米氏常数KPGME为 0 3 6 4mol L ,最大反应速度Vmax为0 0 4 6 2mol·L- 1·min- 1,用固定化酶合成头孢氨苄 ,使用 5 0次保留酶活力 83 9%  相似文献   

9.
Uptake of iron by a mammalian epithelial cell line (CNCM I-221) was shown to be dependent on the nature of the iron complex. Iron uptake was demonstrated by cytochemical staining and determination of redox-reactive iron in cell lysates. Three classes of ligands were investigated: (i) low molecular weight hydrophilic compounds, represented by ethylenediamine-tetraacetic acid (EDTA) and other charged ligands such as adenosine phosphates (ATP, ADP, AMP) and diethylenetriaminepentaacetic acid (DTPA), (2) low-molecular weight lipophilic ligands such as 8-hydroxyquinoline (8-HQ) and (3) a high molecular mass ligand, dextran. Iron complexed to 8-HQ accumulated intracellularly, the uptake rate of iron being 4.16 fmoles cell-1 h-1 of exposure at 37 degrees C or 3.86 fmoles cell-1 h-1 at 4 degrees C. Iron-dextran was endocytosed and retained in phagosomes. The uptake rate of iron following exposure to iron dextrans was found to be 5.6 fmoles cell-1 h-1 of exposure at 37 degrees C. In contrast to iron/8-HQ, uptake of iron dextran by cells was inhibited at 4 degrees C. Iron complexed to low molecular weight hydrophilic ligands was not taken up by cells. Cytotoxicity was measured by reduction of plating efficiency or tritiated thymidine incorporation. These tests showed that toxic effects of added iron were demonstrable only in cells exposed to the complex with 8-HQ.  相似文献   

10.
Specific adhesion of Eshcherichia coli with surface-exposed cellulose-binding domain (CBD) to cellulosic materials was investigated. Whole-cell immobilization was very specific, forming essentially a monolayer of cells onto the different supports. Cells with surface-exposed CBD bound specifically and tightly to cellulose supports at a wide range of pH. In contrast to CBD, which shows the highest binding to cellulose at 4 degrees C, highest cell loading was observed at 37 degrees C. The extent of immobilization was dependent on the amount of surface-exposed CBD. Cells binding increased with increasing amount of CBD until binding was saturated. Even induction of very low level of CBD (0.05 mM IPTG) was sufficient to provide specific and tight binding to cellulose support. Because optimal binding can be obtained under physiological conditions such as pH 7 and 37 degrees C, the results demonstrate the general utility of surface-exposed CBD as an efficient means of whole-cell immobilization.  相似文献   

11.
A Clostridium strain PXYL1 was isolated from a cold-adapted cattle manure biogas digester at 15 degrees C. It could grow at temperatures as low as 5 degrees C up to 50 degrees C with highest specific growth rate at 20 degrees C and is a psychrotroph. It produced extracellular hydrolytic enzymes namely xylanase, endoglucanase, beta-xylosidase, beta-glucosidase and filter paper cellulase, all of which had maximal activity at 20 degrees C. The induction of xylanase was highest on birch wood xylan (37 IU(mg protein)(-1)) compared with xylose (1.11 IU(mg protein)(-1)), cellobiose (1.43 IU(mg protein)(-1)) and glucose (no activity). The xylanase was thermolabile with a half-life of 30 min at 40 degrees C and 8 min at 50 degrees C but stable for over 2 h at 20 degrees C. The crude enzyme released reducing sugars (1.25 g l(-1)) from finger millet flour at 20 degrees C, while commercial food-grade xylanases showed no hydrolysis at this temperature. This is the first report of a Clostridium strain growing at 20 degrees C and producing an array of xylanolytic and cellulolytic enzymes, possessing low temperature optima of 20 degrees C, which may facilitate degradation of plant fibre under low-temperature conditions.  相似文献   

12.
A thermotolerant yeast strain named Kluyveromyces marxianus IMB4 was used in a simultaneous saccharification and fermentation (SSF) process using Kanlow switchgrass as a feedstock. Switchgrass was pretreated using hydrothermolysis at 200 degrees C for 10 min. After pretreatment, insoluble solids were separated from the liquid prehydrolyzate by filtration and washed with deionized water to remove soluble sugars and inhibitors. Insoluble solids were then hydrolyzed using a commercial cellulase preparation and the released glucose was fermented to ethanol by K. marxianus IMB4 in an SSF process. SSF temperature was 37, 41, or 45 degrees C and pH was 4.8 or 5.5. SSF was conducted for 7 days. Results were compared with a control of Saccharomyces cerevisiae D(5)A at 37 degrees C and pH 4.8. Fermentation by IMB4 at 45 and 41 degrees C ceased after 3 and 4 days, respectively, when a pH 4.8 citrate buffer was used. Fermentation continued for all 7 days using IMB4 at 37 degrees C and the control. When pH 5.5 citrate buffer was used, fermentation ceased after 96 h using IMB4 at 45 degrees C, and ethanol yield was greater than when pH 4.8 citrate buffer was used (78% theoretical). Ethanol yield using IMB4 at 45 degrees C, pH 5.5 was greater than the control after 48, 72, and 96 h (P < 0.05).  相似文献   

13.
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process.  相似文献   

14.
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process.  相似文献   

15.
The effects of different nutrient limitations on the production of the two enzymes of gramicidin S biosynthesis were studied during continuous culture of Bacillus brevis. Gramicidin S synthetases I and II were produced in the chemostat under carbon, nitrogen, phosphorus or sulphur limitation. The growth rate, rather than the nature of the limitation, was the major controlling factor in regulating the level of the gramicidin S synthetases. Synthetase production was low at high dilution rates (0.45 to 0.50 h-1) but increased as the dilution rate was lowered. The highest specific activities occurred at dilution rates that were different for each type of limitation: 0.40 h-1 for nitrogen, 0.32 h-1 for carbon, 0.24 h-1 for sulphur and 0.20 h-1 for phosphorus. Phosphorus limitation gave the highest specific activities. At low dilution rates (0.10 to 0.15 h-1), enzyme activities were again low. Sporulation occurred under carbon limitation, but at a lower dilution rate than that which supported optimal gramicidin S synthetase formation. The specific productivity of the synthetases in the chemostat was higher than the highest productivity obtained in batch growth.  相似文献   

16.
The wood-destroying fungus Phanerochaete chrysosporium secretes extracellular enzymes known as lignin peroxidases that are involved in the biodegradation of lignin and a number of environmental pollutants. Several lignin peroxidases are produced in liquid cultures of this fungus. However, only lignin peroxidase isozyme H8 has been extensively characterized. In agitated nutrient nitrogen-limited culture, P. chrysosporium produces two lignin peroxidases in about equal proportions. The molecular weights of these two major proteins (H2 and H8) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 38,500 (H2) and 42,000 (H8). The isoelectric points of these enzymes were 4.3 for H2 and 3.65 for H8. All subsequent experiments in this study were performed with H2 as it contributed the most (42%) to total activity and had the highest specific activity (57.3 U/mg). The Km values of lignin peroxidase H2 for H2O2 and veratryl alcohol were calculated to be 47 microM and 167 microM at pH 3.5, respectively. The pH optima for veratryl alcohol oxidase activity were pH 2.5 at 25 degrees C, pH 3.0 at 35 degrees C, and pH 3.5 at 45 degrees C. In the same manner the temperature optimum shifted from 25 degrees C at pH 2.5 to 45 degrees C at pH 3.5 and approximately 45-60 degrees C at pH 4.5. During storage the resting enzyme was relatively stable for 48 h up to 50 degrees C. Above this temperature the enzyme lost all activity within 6 h at 60 degrees C. At 70 degrees C all activity was lost within 10 min. The resting enzyme retained approximately 80% of its initial activity when stored at 40 degrees C for 21 h at a pH range of 4.0-6.5. Above pH 7.5 and below 4.0, the enzyme lost all activity in less than 5 h. During turnover the enzyme remained active at pH 5.5 for over 2 h whereas the enzyme activity was lost after 45 min at pH 2.5. The oxidation of veratryl alcohol was inhibited by EDTA, azide, cyanide, and by the catalase inhibitor 3-amino-1,2,4-triazole, but not by chloride. In the absence of another reducing substrate incubation of lignin peroxidase H2 with excess H2O2 resulted in partial and irreversible inactivation of the enzyme. The spectral characteristics of lignin peroxidase H2 are similar to those of other peroxidases. The suitability of lignin peroxidases for industrial applications is discussed.  相似文献   

17.
Two distinct extracellular alpha-L-arabinofuranosidases (AFases; EC 3.2.1.55) were purified from the culture filtrate of Penicillium chrysogenum 31B. The molecular masses of the enzymes were estimated to be 79 kDa (AFQ1) and 52 kDa (AFS1) by SDS-PAGE. Both enzymes had their highest activities at 50 degrees C and were stable up to 50 degrees C. Enzyme activities of AFQ1 and AFS1 were highest at pH 4.0 to 6.5 and pH 3.3 to 5.0, respectively. Addition of 10 mg/ml arabinose to the reaction mixture decreased the AFS1 activity but hardly affected AFQ1. Both enzymes displayed broad substrate specificities; they released arabinose from branched arabinan, debranched arabinan, arabinoxylan, arabinogalactan, and arabino-oligosaccharides. AFS1 also showed low activity towards p-nitrophenyl-beta-D-xylopyranoside. An exo-arabinanase, which catalyzes the release of arabinobiose from linear arabinan at the nonreducing terminus, acted synergistically with both enzymes to produce L-arabinose from branched arabinan.  相似文献   

18.
Two strains of Legionella pneumophila serogroup 1 monoclonal subgroup Pontiac were grown for the first time in continuous culture using a chemically defined medium. The influence of temperature on physiology and morphology was investigated by fixing the growth rate (equal to the dilution rate, D) at 0.08 h-1 and controlling the pH and dissolved oxygen concentration of the culture. Serine provided the principal source of carbon and energy but growth was limited by tyrosine. The bacterium behaved as a microaerophile in this medium, with maximal growth occurring at 0.31 (mg O2)I-1 (equivalent to a dissolved oxygen tension of 4% (v/v) air saturation at 30 degrees C). The cultures consisted of flagellated, short rods at 24 degrees C, but exhibited an increased level of pleomorphism and the loss of flagella as the temperature was increased to 37 degrees C. The presence of intracellular granules was noted, and their abundance was temperature-dependent. Polyhydroxybutyrate was present in L. pneumophila, and the proportion of the cell dry weight that it accounted for varied with temperature, being maximal at 24 degrees C. The ratio of saturated to unsaturated fatty acids in the cells decreased as the temperature was reduced towards 24 degrees C, so as to maintain membrane fluidity at low growth temperature.  相似文献   

19.
An extracellular proteinase from Enterococcus faecalis subsp. liquefaciens has been purified 780-fold by a method including gel filtration on Sephadex G-50 and affinity chromatography with gramicidin J as ligand. Approximately 15% of the original enzyme activity was recovered. A purification of 14,800-fold, with 11.4% yield, may be reached using chromatofocusing as final step in the purification procedure. The molar mass of the enzyme has been estimated to be approximately 30 kDa by Sephadex gel filtration and approximately 26 kDa by SDS-PAGE. The isoelectric point has been found to be 4.6. Maximum enzyme activity of the proteinase has been observed at pH 7.5 and 45 degrees C. The enzyme hydrolyzed bovine serum albumin, alpha-lactoalbumin, beta-lactoglobulin, casein and pork myofibrillar and sarcoplasmic proteins. The extracellular proteinase was very stable; the enzyme maintained its activity in cell-free extracts over a very wide range of temperatures (-25 to 37 degrees C) for at least 2 months. At 12 degrees C, it was stable in the pH range of 5.5 to 8.0.  相似文献   

20.
Bacteriocin-producing starter cultures have been suggested as natural food preservatives; however, development of resistance in the target organism is a major concern. We investigated the development of resistance in Listeria monocytogenes to the two major bacteriocins pediocin PA-1 and nisin A, with a focus on the variations between strains and the influence of environmental conditions. While considerable strain-specific variations in the frequency of resistance development and associated fitness costs were observed, the influence of environmental stress seemed to be bacteriocin specific. Pediocin resistance frequencies were determined for 20 strains and were in most cases ca. 10(-6). However, two strains with intermediate pediocin sensitivity had 100-fold-higher pediocin resistance frequencies. Nisin resistance frequencies (14 strains) were in the range of 10(-7) to 10(-2). Strains with intermediate nisin sensitivity were among those with the highest frequencies. Environmental stress in the form of low temperature (10 degrees C), reduced pH (5.5), or the presence of NaCl (6.5%) did not influence the frequency of pediocin resistance development; in contrast, the nisin resistance frequency was considerably reduced (<5 x 10(-8)). Pediocin resistance in all spontaneous mutants was very stable, but the stability of nisin resistance varied. Pediocin-resistant mutants had fitness costs in the form of reduction down to 44% of the maximum specific growth rate of the wild-type strain. Nisin-resistant mutants had fewer and less-pronounced growth rate reductions. The fitness costs were not increased upon applying environmental stress (5 degrees C, 6.5% NaCl, or pH 5.5), indicating that the bacteriocin-resistant mutants were not more stress sensitive than the wild-type strains. In a saveloy-type meat model at 5 degrees C, however, the growth differences seemed to be negligible. The applicational perspectives of the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号