首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the structure of chromatin in cereal species using micrococcal nuclease (MNase) cleavage showed nucleosomal organization and a ladder with typical nucleosomal spacing of 175–185 bp. Probing with a set of DNA probes localized in the authentic telomeres, subtelomeric regions and bulk chromatin revealed that these chromosomal regions have nucleosomal organization but differ in size of nucleosomes and rate of cleavage between both species and regions. Chromatin from Secale and Dasypyrum cleaved more quickly than that from wheat and barley, perhaps because of their higher content of repetitive sequences with hairpin structures accessible to MNase cleavage. In all species, the telomeric chromatin showed more rapid cleavage kinetics and a shorter nucleosome length (160 bp spacing) than bulk chromatin. Rye telomeric repeat arrays were shortest, ranging from 8 kb to 50 kb while those of wheat ranged from 15 kb up to 175 kb. A gradient of sensitivity to MNase was detected along rye chromosomes. The rye-specific subtelomeric sequences pSc200 and pSc250 have nucleosomes of two lengths, those of the telomeric and of bulk nucleosomes, indicating that the telomeric structure may extended into the chromosomes. More proximal sequences common to rye and wheat, the short tandem-repeat pSc119.2 and rDNA sequence pTa71, showed longer nucleosomal sizes characteristic of bulk chromatin in both species. A strictly defined spacing arrangement (phasing) of nucleosomes was demonstrated along arrays of tandem repeats with different monomer lengths (118, 350 and 550 bp) by combining MNase and restriction enzyme digestion.  相似文献   

2.
Fungal chromatins are reported to exhibit unusually short nucleosomal DNA repeat lengths. To test whether this is a phylogenetic feature of fungi or rather is correlated with an apparent absence of condensed chromatin in the organisms studied, we have examined the chromatin organization and the complement of basic nuclear proteins in the fungus Entomophthora, an organism which exhibits marked chromatin condensation. Micrococcal nuclease digestion of Entomophthora chromatin revealed a nucleosomal DNA repeat length of 197 +/- 1.2 base pairs (bp). This repeat length is 20-40 bp longer than that reported for any fungus. Entomophthora nucleosomes exhibited an HI-like protein which was much less basic than the HI histones reported for higher eukaryotes but which was similar in basicity to the HI histone reported for the fungus Neurospora. However, the nucleosomal DNA repeat length of Neurospora chromatin is reported to be unusually short, whereas that of Entomophthora was found to be typical of the repeat lengths observed for chromatins of higher eukaryotes. Thus, repeat length, at least in fungi, would not appear to be directly determined by the basicity of the fungal cognate of histone HI.  相似文献   

3.
Organization of 5S genes in chromatin of Xenopus laevis.   总被引:5,自引:2,他引:3       下载免费PDF全文
The chromatin organization of the genes coding for 5S RNA in Xenopus laevis has been investigated with restriction endonucleases and micrococcal nuclease. Digestion of nuclei from liver, kidney, blood and kidney cells maintained in culture with micrococcal nuclease reveals that these Xenopus cells and tissues have shorter nucleosome repeat lengths than the corresponding cells and tissues from other higher organisms. 5S genes are organized in nucleosomes with repeat lengths similar to those of the bulk chromatin in liver (178 bp) and cultured cells (165 bp); however, 5S gene chromatin in blood cells has a shorter nucleosome repeat (176 bp) than the bulk of the genome in these cells (184 bp). From an analysis of the 5S DNA fragments produced by extensive restriction endonuclease cleavage of chromatin in situ, no special arrangement of the nucleosomes with respect to the sequence of 5S DNA can be detected. The relative abundance of 5S gene multimers follows a Kuhn distribution, with about 57% of all HindIII sites cleaved. This suggests that HindIII sites can be cleaved both in the nucleosome core and linker regions.  相似文献   

4.
Bash R  Wang H  Yodh J  Hager G  Lindsay SM  Lohr D 《Biochemistry》2003,42(16):4681-4690
Subsaturated nucleosomal arrays were reconstituted on a single-copy MMTV promoter DNA fragment by salt dialysis procedures and studied by atomic force microscopy. Up to an occupation level of approximately eight nucleosomes on this 1900 bp template, salt reconstitution produces nucleosomal arrays which look very similar to comparably loaded 5S rDNA nucleosomal arrays; i.e., nucleosomes are dispersed on the DNA template. Thus, at these occupation levels, the single-copy MMTV template forms arrays suitable for biophysical analyses. A quantitative comparison of the population features of subsaturated MMTV and 5S arrays detects differences between the two: a requirement for higher histone levels to achieve a given level of nucleosome occupation on MMTV templates, indicating that nucleosome loading is thermodynamically less favorable on this template; a preference for pairwise nucleosome occupation of the MMTV (but not the 5S) template at midrange occupation levels; and an enhanced salt stability for nucleosomes on MMTV versus 5S arrays, particularly in the midrange of array occupation. When average occupation levels exceed approximately eight nucleosomes per template, MMTV arrays show a significant level of mainly intramolecular compaction; 5S arrays do not. Taken together, these results show clearly that the nature of the underlying DNA template can affect the physical properties of nucleosomal arrays. DNA sequence-directed differences in the physical properties of chromatin may have important consequences for functional processes such as gene regulation.  相似文献   

5.
A critical feature of chromatin with regard to structure and function is the regular spacing of nucleosomes. In vivo, spacing of nucleosomes occurs in at least two steps, but the mechanism is not understood. In this report, we have mimicked the two-step process in vitro. A novel spacing activity has been partially purified from Xenopus laevis ovaries. When this activity is added, either at the beginning or at the end of a nucleosomal assembly reaction, it can convert a DNA template consisting of irregularly spaced nucleosomes into a chromatin structure made up of regularly spaced nucleosomes with a repeat length of about 165 base pairs. The reaction requires ATP. Histone H1 is able to increase the nucleosomal repeat from 165 to 190 base pairs. This two-step increase in nucleosomal repeat length suggests that both the spacing activity and histone H1 contribute to generating repeat lengths of greater than 165 base pairs and that their contributions may be additive. Alternatively, the critical step in the spacing reaction may not be the formation of the 165-base pair repeat but may be the sliding of nucleosomes or the reorganization of the octamer structure induced by the spacing activity.  相似文献   

6.
7.
B Wittig  S Wittig 《Cell》1979,18(4):1173-1183
DNA (760 bp) isolated from nucleosome tetramers of staphylococcal nuclease-digested chicken embryo chromatin was highly enriched for tRNA genes and subsequently cloned in E. coli chi 1776. The location of genes coding for chicken embryo tRNALys, tRNAPhe and tRNAiMet within the cloned nucleosome tetramer DNA was determined using restriction endonucleases for which single cleavage sites could be predicted from the respective tRNA base sequence. All our tRNA genes reside nonrandomly at four locations on nucleosome tetramer DNA. The spacing between the tRNA gene locations is approximately 190 bp, similar to the DNA repeat length of chicken embryo chromatin. The four tRNA gene locations were also defined in noncloned nucleosome tetramer DNA highly enriched for tRNA genes. The majority of genes coding for tRNALys, tRNAPhe and tRNAiMet, respectively, are located in equal proportion 40-45, 230, 420 and 610 bp distant from the 5' end of the tRNA-identical strand. Thus the tRNA structural gene sequences all appear to begin about 20 bp "inside" the nucleosome core. As observed with nucleosomal DNA not enriched for tRNA genes, the phase relationship between tRNA genes and nucleosome location is maintained over a distance of 4-6 subsequent nucleosomes. A cloned molecule of nucleosomal DNA containing both a tRNALys gene and a tRNAiMet gene in the same polarity reveals that a phase adjustment might be necessary for the nucleosomes between these two tRNA genes in chicken embryo chromatin.  相似文献   

8.
9.
The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, approximately 10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat ( approximately 10 bp), obeying the forms 10n+5 bp (integer n). This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast.  相似文献   

10.
Organization of internucleosomal DNA in rat liver chromatin   总被引:6,自引:1,他引:5       下载免费PDF全文
A detailed analysis of the length distribution of DNA in nucleosome dimers trimmed with exonuclease III and S1 nuclease suggests that the previously described variation of internucleosomal distance in rat liver occurs, at least for a subset of the nucleosomes, by integral multiples of the helical repeat of the DNA. Results obtained upon digestion of chromatin with DNase II further suggest that lengths of internucleosomal DNA are integral multiples of the helical repeat of the DNA plus approximately 5 bp. Restraints imposed by these features on the arrangement of nucleosomes along the fiber are discussed.  相似文献   

11.
T E Palen  T R Cech 《Cell》1984,36(4):933-942
The chromatin structure of regulatory regions of the extrachromosomal rRNA genes of Tetrahymena thermophila was probed by nuclease treatment of isolated nuclei. The chromatin near the origins of replication contains hypersensitive sites for micrococcal nuclease, DNAase I, and DNAase II. These sites persist in starved cells, consistent with the origins' being maintained in an altered chromatin structure independent of DNA replication. The region between the two origins of replication is organized into a phased array of seven nucleosomes, the fourth of which is centered at the axis of symmetry of the palindromic rDNA. The entire transcribed region and 150 bp upstream from the initiation site are generally accessible to nucleases; any histone proteins associated with these regions are clearly not in a highly organized nucleosomal array as seen in the central region. Comparison of the chromatin structures of the central spacer of T. thermophila and T. pyriformis rDNA reveals that deletion or insertion of DNA has occurred in increments of 200 bp. This is taken to imply that there are constraints on the evolution of spacer DNA sequences at the level of the nucleosome.  相似文献   

12.
Nucleosome-nucleosome interactions drive the folding of nucleosomal arrays into dense chromatin fibers. A better physical account of the folding of chromatin fibers is necessary to understand the role of chromatin in regulating DNA transactions. Here, we studied the unfolding pathway of regular chromatin fibers as a function of single base pair increments in linker length, using both rigid base-pair Monte Carlo simulations and single-molecule force spectroscopy. Both computational and experimental results reveal a periodic variation of the folding energies due to the limited flexibility of the linker DNA. We show that twist is more restrictive for nucleosome stacking than bend, and find the most stable stacking interactions for linker lengths of multiples of 10 bp. We analyzed nucleosomes stacking in both 1- and 2-start topologies and show that stacking preferences are determined by the length of the linker DNA. Moreover, we present evidence that the sequence of the linker DNA also modulates nucleosome stacking and that the effect of the deletion of the H4 tail depends on the linker length. Importantly, these results imply that nucleosome positioning in vivo not only affects the phasing of nucleosomes relative to DNA but also directs the higher-order structure of chromatin.  相似文献   

13.
Telomeric chromatin has peculiar features with respect to bulk chromatin, which are not fully clarified to date. Nucleosomal arrays, reconstituted on fragments of human telomeric DNA and on tandemly repeated tetramers of 5S rDNA, have been investigated at single-molecule level by atomic force microscopy and Monte Carlo simulations. A satisfactory correlation emerges between experimental and theoretical internucleosomal distance distributions. However, in the case of telomeric nucleosomal arrays containing two nucleosomes, we found significant differences. Our results show that sequence features of DNA are significant in the basic chromatin organization, but are not the only determinant.  相似文献   

14.
DNA lengths in the structural repeat units of Chinese hamster ovary (CHO) and chicken erythrocyte chromatin were compared by analyzing the sizes of DNA fragments produced after treatment of nuclei with staphylococcal nuclease. The repeat length of CHO chromatin (173 +- 4 BP) is about 20 base pairs (BP) smaller than that of chicken erythrocyte chromatin (194 +- 8 BP). Repeat lengths of rat liver and calf thymus chromatin were found to be about 10 BP shorter than that of chicken erythrocyte chromatin. Thus significant variations occur in repeat units of chromatin of higher eukaryotes. These variations occur in the lengths of "spacer" (or "internucleosomal") DNA segments, not in "core particle" (or "nucleosomal") DNA lengths. The concept of spacer regions and the possible influence of H1 histones is discussed.  相似文献   

15.
On the occurrence of nucleosome phasing in chromatin.   总被引:15,自引:0,他引:15  
D Lohr  K Tatchell  K E Van Holde 《Cell》1977,12(3):829-836
We have found that DNAase I digestion of yeast, HeLa and chicken erythrocyte nuclei produces a pattern of DNA fragments spaced 10 bases apart and extending to at least 300 bases. This "extended ladder" of DNA fragments is most clearly seen with yeast, and least clearly with chicken erythrocytes. The appearance of regular and discrete bands at sizes much larger than the repeat size shows that the core particles (140 bp of DNA + H2A, H2B, H3 H4) in at least some fraction of chromatin are spaced in a particular fashion, by discrete lengths of spacer DNA, and not randomly. Based on the abundance of small repeats in yeast and from experiments with nucleosome oligomers, we conclude that the extended ladder and nucleosomal phasing probably arise mainly from regions in the chromatin in which nucleosome cores are closely packed or closely spaced (140-160 bp X n). Contributions from less closely packed but still accurately phased nucleosomes, however, cannot be entirely excluded.  相似文献   

16.
M. Tien Kuo  T. C. Hsu 《Chromosoma》1978,68(3):229-240
Interaction of bleomycin with nuclei isolated from a variety of mammalian cells resulted in the release of nucleosomes. When isolated mononucleosomes (core plus linker) were re-treated with bleomycin, no further degradation of DNA occurred. The results suggest that the bleomycin cleavage sites in chromatin are present only in the linker region and that there are probably only one or two cleavage sites per linker. The repeat lengths of nucleosomal DNA released by bleomycin from nuclei of different species are different; this variability is considered to reflect the length of the linker. Incorporation of BrdU into DNA did not alter the bleomycin action on nucleosomes. When mitotic cells were held at metaphase for a prolonged period, bleomycin caused a gradual disintegration of chromosomes, although the bleomycin cleavage sites in metaphase chromosomes were found to be the same as those in interphase nuclei.  相似文献   

17.
The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.  相似文献   

18.
Nucleosomes were isolated from chromatin of suspension cultured cells of Nicotiana tabacum var. White Burley, which were either habituated or transformed by Agrobacterium tumefaciens, strain T37. Chromatin repeat length in both types of tissue was identical and can be estimated to be 195 ± 10 bp. Using Southern transfer of nucleosomal DNA and hybridization with cloned nick-translated HindIII fragments of pTi C58 we show that the T-DNA originating from the Ti-plasmid of A. tumefaciens is organized in nucleosomes within the chromatin of crown gall tumor cells.  相似文献   

19.
B R Campell  Y Song  T E Posch  C A Cullis  C D Town 《Gene》1992,112(2):225-228
We have isolated a genomic clone containing Arabidopsis thaliana 5S ribosomal RNA (rRNA)-encoding genes (rDNA) by screening an A. thaliana library with a 5S rDNA probe from flax. The clone isolated contains seven repeat units of 497 bp, plus 11 kb of flanking genomic sequence at one border. Sequencing of individual subcloned repeat units shows that the sequence of the 5S rRNA coding region is very similar to that reported for other flowering plants. Four A. thaliana ecotypes were found to contain approx. 1000 copies of 5S rDNA per haploid genome. Southern-blot analysis of genomic DNA indicates that 5S rDNA occurs in long tandem arrays, and shows the presence of numerous restriction-site polymorphisms among the six ecotypes studied.  相似文献   

20.
Sedimentation measurements and electron microscopy at a series of ionic strengths suggest that chromatin from neurons of the cerebral cortex is able to form condensed structures in vitro that are probably several turns of a solenoid with about six nucleosomes per turn. Since neuronal chromatin has a short nucleosomal repeat (approximately 165 bp) allowing virtually no linker DNA between nucleosomes, and yet forms apparently 'normal' elements of solenoid, the packing of nucleosomes in the solenoid must be highly constrained. This permits only a limited number of possible models, and enables tentative suggestions to be made about the location of the linker DNA in the typical solenoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号