首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study proposes a novel dual S-shaped logistic model for automatically quantifying the characteristic kinetic curves of breast lesions and for distinguishing malignant from benign breast tumors on dynamic contrast enhanced (DCE) magnetic resonance (MR) images. D(α,β) is the diagnostic parameter derived from the logistic model. Significant differences were found in D(α,β) between the malignant benign groups. Fisher's Linear Discriminant analysis correctly classified more than 90% of the benign and malignant kinetic breast data using the derived diagnostic parameter (D(α,β)). Receiver operating characteristic curve analysis of the derived diagnostic parameter (D(α,β)) indicated high sensitivity and specificity to differentiate malignancy from benignancy. The dual S-shaped logistic model was effectively used to fit the kinetic curves of breast lesions in DCE-MR. Separation between benign and malignant breast lesions was achieved with sufficient accuracy by using the derived diagnostic parameter D(α,β) as the lesion's feature. The proposed method therefore has the potential for computer-aided diagnosis in breast tumors.  相似文献   

2.
The biological characterization of an individual patient's tumor by noninvasive imaging will have an important role in cancer care and clinical research if the molecular processes that underlie the image data are known. Spatial heterogeneity in the dynamics of magnetic resonance imaging contrast enhancement (DCE-MRI) is hypothesized to reflect variations in tumor angiogenesis. Here we demonstrate the feasibility of precisely colocalizing DCE-MRI data with the genomic and proteomic profiles of underlying biopsy tissue using a novel MRI-guided biopsy technique in a patients with prostate cancer.  相似文献   

3.
This experiment aimed to compare the ionic(Gadodiamide,Gd-DTPA-BMA) and non-ionic(Gadopentetate dimeglumine,Gd-DTPA) gadolinium-based contrast agents(GBCA) in the quantitative evaluation of C6 glioma with dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI).A C6 glioma model was established in 12 Wistar rats,and magnetic resonance(MR)scans were performed six days after tumor implantation.Imaging was performed using a 3.0-T MR scanner with a 7-inch handmade circular coil.Pre-contrast T1 mapping and dynamic contrast-enhanced T1 WI after a bolus injection(0.2 mL s~(-1)) of GBCA at 0.4 mmol kg~(-1) were performed.Each rat received two DCE-MRI scans,24 h apart.The first and second scans were performed using Gd-DTPA-BMA and Gd-DTPA,respectively.Image data were processed using the Patlak model.Both K~(trans)and V_p maps were generated.Tumors were manually segmented on all 3D K~(trans) and V_p maps.Pixel counts and mean values were recorded for use in a paired f-test Three radiologists independently performed the tumor segmentation and value calculation.The agreements from different observers were subjective to the intra-class correlation coefficient(ICC).Readers demonstrated that the pixel counts of tumors in K~(trans) maps were higher with Gd-DTPA-BMA than with Gd-DTPA(P0.001,all readers).Although the K~(trans) values were higher with Gd-DTPA-BMA than with Gd-DTPA,there was no statistical significance(P0.05,all readers).The pixel counts of tumors in V_p maps,as well as V_p values,showed no obvious difference between the two agents(P0.05,all readers).Excellent interobserver measurement reproducibility and reliability were demonstrated in the ICC tests.The Gd-DTPA-BMA contrast agent had significantly higher pixel counts of glioma in the K~(trans) maps,and an increased tendency for average K~(trans) values,indicating that DCE-MRI with Gd-DTPA-BMA may be more suitable and sensitive for the evaluation of glioma.  相似文献   

4.
The molecular mechanisms of the hepatic transport of B22956/1, a new gadolinium complex from the class of intravascular contrast agents for MRI, which undergoes extensive biliary elimination, were studied. Biliary and urinary elimination of B22956/1 were measured in normal and in mutant MRP2 lacking rats (TR(-)); cellular trafficking of the compound was assessed in wild and MRP1 or MRP2 transfected MDCKII cells. Eight hours after IV injection of B22956/1, 90+/-8% of the dose was recovered in the bile of normal rats. By contrast, in TR(-) rats, the biliary excretion was significantly lower (14+/-3%) while 55+/-9% of the compound was found in urine. In vitro, the cellular accumulation of B22956/1 was significantly lower in both MRP1 and MRP2 transfected cells as compared to wild type MDCKII cells, and the cellular efflux was prevented by the MRP inhibitor MK571, indicating the involvement of both MRP2 and MRP1 in the transport of B22956/1. Due to the distinct cellular localization of the proteins, MRP2 accounts for the biliary and urinary excretion of the compound, while MRP1 prevents cellular accumulation of the MRI agent. B22956/1 may be useful in clinical conditions where a defective biliary transport is present.  相似文献   

5.
The design of excitation signals for Magnetic Resonance Imaging (MRI) is cast as an optimal control problem. Here, we demonstrate that signals other than pulse excitations, which are ubiquitous in MRI, can provide adequate excitation, thus challenging the optimality and ubiquity of pulsed signals. A class of on-resonance piecewise continuous amplitude modulated signals is introduced. It is shown that despite the bilinear nature of the Bloch equations, the spins system response is largely analytically tractable for this class of signals, using Galerkin approximation methods. To challenge the optimality of the pulse excitation, an appropriate cost criterion, the Signal Contrast Efficiency (SCE), is developed. It is to be optimised subject to dynamics expressed by the Bloch equations. To solve the problem the Bloch equation is transferred to the excitation dependent rotating frame of reference. The numerical solutions to the problem for different tissue types show that for a short period of time, pulse excitations provide the maximum signal contrast. However, the problem should be solved for longer periods of time which may result in a different answer than a pulse. For this purpose, the approximate analytic solution which is derived based on averaging the Bloch equation in the excitation dependent rotating frame of reference will be used to find the optimal excitation pattern. The solution to the optimisation problem is potentially useful for all forms of MRI including structural and functional imaging. The objective of this paper is to show that while classically transient response of pulses have been monitored so far, the optimal excitation pattern may be the steady state response of a non-pulse excitation.  相似文献   

6.
A predictive technique in the management of patients with cancer could improve the therapeutic index by allowing better individualization of treatment. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique that can provide anatomical and physiological information on the tumor and its microenvironment. We studied the effect of chemotherapy (gemcitabine), anti-angiogenesis therapy (sunitinib) and radiotherapy on the kinetics of DCE-MRI parameters in a preclinical model of pancreatic cancer using P846, a new low-diffusible contrast agent. Mice underwent DCE-MRI before treatment (MRI1), after 1 week of treatment (MRI2), and after 1 additional week (MRI3). Combined treatment with radiotherapy and sunitinib had a synergistic effect on tumor growth. In radiotherapy/sunitinib-treated mice, a decrease in K(trans) at MRI2 predicted its superior antivascular and antitumor effect at an early time. An increased K(trans) at MRI2, as seen in gemcitabine- and gemcitabine/sunitinib-treated mice, reflects increased permeability for P846 and might predict a smaller therapeutic effect at this early time. This study shows that the kinetics of DCE-MRI parameters depends on the contrast agent used. P846 appears to be a promising low-diffusible agent to monitor therapeutic effects in this preclinical cancer model, but further studies are needed to compare its behavior with Gd-DTPA and macromolecular-weight contrast agents. Sunitinib as a radiosensitizer is promising for future clinical trials in human pancreatic cancer.  相似文献   

7.
Animal studies have found that deficits in brain docosahexaenoic acid (DHA, 22:6n-3) accrual during perinatal development leads to transient and enduring abnormalities in brain development and function. Determining the relevance of this evidence to brain disorders in humans has been hampered by an inability to determine antimortem brain DHA levels and limitations associated with a postmortem approach. Accordingly, there is a need for alternate or complementary approaches to better understand the role of DHA in cortical function and pathology, and conventional magnetic resonance imaging (MRI) techniques may be ideally suited for this application. A major advantage of neuroimaging is that it permits prospective evaluation of the effects of manipulating DHA status on both clinical and neuroimaging variables. Emerging evidence from MRI studies suggest that greater DHA status is associated with cortical structural and functional integrity, and suggest that reduced DHA status and abnormalities in cortical function observed in psychiatric disorders may be interrelated phenomenon. Preliminary evidence from animal MRI studies support a critical role of DHA in normal brain development. Neuroimaging research in both human and animals therefore holds tremendous promise for developing a better understanding of the role of DHA status in cortical function, as well as for elucidating the impact of DHA deficiency on neuropathological processes implicated in the etiology and progression of neurodevelopmental and psychiatric disorders.  相似文献   

8.
Degenerative disc disease is a major source of disability in humans. The baboon model is an excellent natural disease model to study comparable human disease, because baboons are relatively large (adult males 20-26 kg, adult females 12-17 kg), long-lived (30-45 years), well defined, easy to use, and closely related to humans. Published investigations with plain radiographs of disc degeneration in baboons indicated vertebral anatomy and changes that were remarkably similar to those seen in humans, and it would be valuable to determine if magnetic resonance imaging (MRI) and histopathologic evaluation would be useful methods for studying the model, as MRI allows multi-planar visualization of tissues without the use of intravenous contrast and it is superior for evaluating disc hydration, annulus tears, and herniations. The thoracolumbar junctions from 47 randomly selected baboons, ranging in age from 2 weeks to 34 years, were evaluated with MRI and histopathology. Excellent correlation with MRI was observed for changes in disc desiccation, height, and age (P < 0.001). The pathologic analysis demonstrated P values of < 0.001 when comparing histopathology with age and MRI results. All severely degenerated discs seen by MRI were in baboons 14 years of age or older.  相似文献   

9.
10.
Long-term storage of articular cartilage (AC) has excited great interest due to the practical surgical significance of this tissue. The liquidus-tracking (LT) method developed by Pegg et al. (2006) [29] for vitreous preservation of AC achieved reasonable survival of post-warming chondrocytes in situ, but the design of the entire procedure was more dependent on trial and error. Mathematical modeling would help to better understand the LT process, and thereby make possible improvements to attain higher cell survival. Mass transfer plays a dominant role in the LT process. In the present study, a diffusion model based on the free-volume theory and the Flory–Huggins thermodynamics theory was developed to predict the permeation of dimethyl sulfoxide (Me2SO) into AC. A comparison between the predicted mean concentration of Me2SO in the AC disc and the experimental data over wide temperature and concentration ranges [−30 to 37 °C, 10 to 64.5% (w/w)] shows that the developed model can accurately describe the permeation of Me2SO into AC [coefficient of determination (R2): 0.951–1.000, mean relative error (MRE): 0.8–12.8%]. With this model, the spatial and temporal distribution of Me2SO in the AC disc during a loading/unloading process can be obtained. Application of the model to Pegg et al.’s LT procedure revealed that the liquidus line is virtually not followed for the center part of the AC disc. The presently developed model will be a useful tool in the analysis and design of the LT method for vitreous preservation of AC.  相似文献   

11.
OBJECTIVE: To correlate and assess the utility of dynamic contrast-enhanced three-dimensional gadolinium-enhanced magnetic resonance imaging (Gd-3DMRI) and fine needle aspiration biopsy (FNAB) findings in patients with suspected breast disease. STUDY DESIGN: Beginning in 1993, all patients who underwent percutaneous FNAB of the breast and had concurrent Gd-3DMRI evaluation of the breast were selected for this study. Findings for FNAB and Gd-3DMRI were stratified into two categories, positive and negative. Subsequent clinical management decisions, which included surgical intervention and/or clinical follow-up, were recorded for all patients. RESULTS: There were 69 FNABs in 59 patients with corresponding Gd-3DMRI evaluation. A positive result by both FNAB and Gd-3DMRI was found in 15 of 18 malignant cases. FNAB missed one case, and Gd-3DMRI missed two, and each of these was thought to be technical. Combining the methods yielded 100% sensitivity. False positive results on Gd-3DMRI (17 cases) were all confirmed to be benign by FNAB and subsequent tissue evaluation. All 32 cases with combined negative results by FNAB and Gd-3DMRI demonstrated a benign process, yielding a specificity of 100% (32/32). CONCLUSION: Our combined testing modalities showed a high degree of specificity and good sensitivity. FNAB used with dynamic contrast-enhanced Gd-3DMRI can contribute valuable information for physicians treating patients with suspected breast abnormalities.  相似文献   

12.
Oxidative stress may be involved in the dopaminergic neurodegenerations seen in 6-OHDA-lesioned rats through its production of free radicals and through mitochondrial dysfunction. In this study, we noninvasively demonstrate brain redox alterations in 6-OHDA-lesioned rats using Overhauser-enhanced magnetic resonance imaging (OMRI). The reduction rate of 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-l-oxyl (methoxycarbonyl-PROXYL), a redox-sensitive contrast agent, was used as an index of the redox status in vivo. The methoxycarbonyl-PROXYL reduction rate, calculated from continuous images, decreased significantly in lesioned hemispheres compared to their corresponding contralateral hemispheres. The reduction rates in cellular fractions obtained from the striatum were estimated by X-band electron spin resonance (ESR) and calculated by assuming first-order kinetics for their time-dependent decreases. When methoxycarbonyl-PROXYL was mixed with cytoplasm fractions, the reduction rates were the same in both hemispheres. However, the ESR signal of methoxycarbonyl-PROXYL in the mitochondrial fraction of the lesioned hemispheres decayed more slowly than that of the corresponding contralateral hemispheres. Concordantly, biochemical assays showed that the activity of mitochondrial complex I also decreased more slowly in lesioned hemispheres. Thus, this method of noninvasively imaging brain redox alterations faithfully reflects changes in mitochondrial complex I activity in 6-OHDA-lesioned rats.  相似文献   

13.
Gadocoletate ion is a new paramagnetic intravascular contrast agent for magnetic resonance imaging (MRI). An high-performance liquid chromatographic method for assaying Gadocoletate ion in human plasma, urine and faecal samples is described. The analysis is based on the reversed-phase chromatographic separation of Gadocoletate ion from the endogenous components of the biological matrices and its detection during elution by ultraviolet light absorption at 200 nm. The selectivity of the method was satisfactory. The mean absolute recovery during the analytical sample preparation was greater than 87%. The precision, expressed as coefficient of variation (CV%) ranged from 0.29 to 5.90% and the accuracy, expressed as mean relative error (R.E.%) of the analytical method ranged from -3.7 to +7.1%. The detection limit in plasma and urine was 2.01 and 10.0 microg/mL (0.00203 and 0.0101 micromol/mL), respectively. The detection limit in homogenized faecal samples was 17.7 microg/g (0.0179 micromol/g). Stability studies were performed in human plasma and urine samples during the analytical cycle. Gadocoletate ion was shown to be stable in human plasma and in human urine when stored at about +4 degrees C for up 24 h, and after three freeze-thaw cycles. In addition, it was shown to be stable in samples of processed plasma and in diluted urine at about +4 degrees C for 48 h, and at room temperature for at least 24 h. As regards the long-term stability of Gadocoletate ion, the results of dedicated studies showed that Gadocoletate ion is stable in human plasma samples when stored at +4 degrees C for up to 30 days and at -80 degrees C for up to 90 days. Gadocoletate ion is stable in samples of human urine when stored at +4 degrees C for up to 30 days, and when stored at -20 degrees C and at -80 degrees C for up to 90 days. The method has been successfully validated in human plasma, urine and faeces and it has been shown to be precise, accurate and reliable.  相似文献   

14.
39K nuclear magnetic resonance was used to measure the efflux of K+ from suspensions of human erythrocytes [red blood cells (RBCs)], that occurred in response to the calcium ionophore, A23187 and calcium ions; the latter activate the Gárdos channel. Signals from the intra- and extracellular populations of 39K+ were selected on the basis of their longitudinal relaxation times, T 1, by using an inversion- recovery pulse sequence with the mixing time, τ1, chosen to null one or other of the signals. Changes in RBC volume consequent upon efflux of the ions also changed the T 1 values so a new theory was implemented to obviate a potential artefact in the data analysis. The velocity of the K+ efflux mediated by the Gárdos channel was 1.19±0.40 mmol (L RBC)−1 min−1 at 37°C.  相似文献   

15.

Background

Nephropathies are among the most common diseases in dogs. Regular examination of the kidney function plays an important role for an adequate treatment scheme. The determination of the glomerular filtration rate (GFR) is seen as the gold standard in assessing the kidney status. Most of the tests have the disadvantage that only the complete glomerular filtration rate of both kidneys can be assessed and not the single kidney glomerular filtration rate. Imaging examination techniques like dynamic contrast-enhanced magnetic resonance imaging have the potential to evaluate the single kidney GFR. There are studies in human medicine describing the determination of the single kidney GFR using this technique. To our knowledge there are no such studies for dogs.

Results

An exponential fit was found to describe the functional interrelation between signal intensity and contrast medium concentrations. The changes of contrast medium concentrations during the contrast medium bolus propagation were calculated. The extreme values of contrast medium concentrations in the kidneys were reached at nearly the same time in every individual dog (1st maximum aorta 8.5 s, 1st maximum in both kidneys after about 14.5 s; maximum concentration values varied between 17 and 125 µmol/mL in the aorta and between 4 and 15 µmol/mL in the kidneys). The glomerular filtration rate was calculated from the concentration changes of the contrast medium using a modified Rutland-Patlak plot technique. The GFR was 12.7?±?2.9 mL/min m2 BS for the left kidney and 12.0?±?2.2 mL/min/m2 BS for the right kidney. The mean values of the coefficient of determination of the regression lines were averagely 0.91?±?0.08.

Conclusions

The propagation of contrast medium bolus could be depicted well. The contrast medium proceeded in a similar manner for every individual dog. Additionally, the evaluation of the single kidney function of the individual dogs is possible with this method. A standardized examination procedure would be recommended in order to minimize influencing parameters.
  相似文献   

16.
17.
Some plant leaves display complex, orientation-dependent, proton nuclear magnetic resonance (1H NMR) spectra. The spectral patterns vary as the angle between the leaf surface and the applied magnetic field is varied. They also vary with temperature and with the quantity of absorbed manganous ions, but they are independent of magnetic field strength. In this paper, we propose a theory to explain the origin of the spectra and a model from which the patterns can be calculated. The theory shows how heterogeneous magnetic susceptibilities and local dipolar magnetic fields in chloroplasts can shift the water-proton resonance field. The model describes a simplified leaf structure in which the chloroplasts are nonrandomly aligned with respect to the leaf surface. Model calculations are tested by comparison with experimental spectra from hawthorn leaves (Crataegus sp.).  相似文献   

18.
The gadobenate ion is an intravascular paramagnetic contrast agent for magnetic resonance imaging. An HPLC method for assaying gadobenate ion in plasma, urine, faeces, bile and tissue samples is described. The analysis is based on the reversed-phase chromatographic separation of gadobenate ion from the endogenous components of biological matrices and detection by UV absorption at 210 nm. The selectivity of the method was satisfactory. The mean absolute recovery was greater than 95%. The precision and accuracy of the analytical methods were in the range 0.1–6.5% and −12 to +9.3%, respectively. The detection limits in plasma (0.1 ml), urine (0.05 ml), dried faeces (200 mg suspended in 4 ml water), bile (0.5 ml), and dried liver tissue (100 mg suspended in 1 ml water) were, respectively, 0.24, 0.47, 2.6, 0.63 and 2.8 nmol ml−1 (corresponding to 0.16, 0.31, 1.7, 0.42 and 1.9 μg ml−1).  相似文献   

19.
The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.  相似文献   

20.
Membrane transport proteins transduce free energy stored in electrochemical ion gradients into a concentration gradient and are a major class of membrane proteins, many of which play important roles in human health and disease. Recently, the X-ray structure of the Escherichia coli lactose permease (LacY), an intensively studied member of a large group of related membrane transport proteins, was solved at 3.5 A. LacY is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the molecule. The structure represents the inward-facing conformation, as evidenced by a large internal hydrophilic cavity open to the cytoplasmic side. The structure with a bound lactose homolog reveals the sugar-binding site in the cavity, and a mechanism for translocation across the membrane is proposed in which the sugar-binding site has alternating accessibility to either side of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号