首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model of the ion transport across a membrane containing channel with inactivation has been analysed. Under certain conditions, such a membrane has been shown to behave as a selfoscillating circuit of a very high quality, its own frequency ranging for a variety of natural channels between 10(-1)-10(3) cycles. When exposed to an alternating electric field with a frequency approximating f0, the membrane displays resonance changes in its potential and channel conductivity. The average (over a period of forced oscillations) values of the potential and conductivity also show a resonance type of dependence on the frequency of the external field.  相似文献   

2.
Wheat seeds contain different lipid binding proteins that are low molecular mass, basic and cystine-rich proteins. Among them, the recently characterized puroindolines have been shown to inhibit the growth of fungi in vitro and to enhance the fungal resistance of plants. Experimental data, using lipid vesicles, suggest that this antimicrobial activity is related to interactions with cellular membranes, but the underlying mechanisms are still unknown. This paper shows that extracellular application of puroindolines on voltage-clamped Xenopus laevis oocytes induced membrane permeabilization. Electrophysiological experiments, on oocytes and artificial planar lipid bilayers, suggest the formation, modulated by voltage, of cation channels with the following selectivity: Cs(+) > K(+) > Na(+) > Li(+) > choline = TEA. Furthermore, this channel activity was prevented by addition of Ca(2+) ions in the medium. Puroindolines were also able to decrease the long-term oocyte viability in a voltage-dependent manner. Taken together, these results indicate that channel formation is one of the mechanisms by which puroindolines exert their antimicrobial activity. Modulation of channel formation by voltage, Ca(2+), and lipids could introduce some selectivity in the action of puroindolines on natural membranes.  相似文献   

3.
The effect of the neurotoxin melittin on the activation of ion channels of excitable membrane, the plasmalemma of Characeae algae cells, isolated membrane patches of neurons of mollusc L. stagnalis and Vero cells was studied by the method of intracellular perfusion and the patch-clamp technique in inside-out configuration. It was shown that melittin disturbs the conductivity of plasmalemma and modifieds Ca(2+)-channels of plant membrane. The leakage current that appears by the action of melittin can be restored by substituting calmodulin for melittin. Melittin modifies K(+)-channels of animal cell membrane by disrupting the phospholipid matrix and forms conductive structures in the membrane by interacting with channel proteins, which is evidenced by the appearance of additional ion channels.  相似文献   

4.
5.
Functional biological synthetic composite (BSC) membranes were made using phospholipids, biological membrane proteins and permeable synthetic supports or membranes. Lipid bilayers were formed on porous polycarbonate (PC), polyethylene terephthalate (PETE) and poly (l-lactic acid) (PLLA) membranes and in 10-100 μm laser-drilled pores in a 96-well plastic plate as measured by increased resistance or decreased currents. Bilayers in 50 μm and smaller pores were stable for up to 4 h as measured by resistance changes or a current after gramicidin D reconstitution. Biological membrane transport reconstitution was then carried out. Using vesicles containing Kv1.5 K+ channels, K+ currents and decreased resistance were measured across bilayers in 50 μm pores in the plastic plate and PLLA membranes, respectively, which were inhibited by compound B, a Kv1.5 K+ channel inhibitor. Functional reconstitution of Kv1.5 K+ channels was successful. Incorporation of membrane proteins in functional form in stable permeable membrane-supported lipid bilayers is a simple technology to create BSC membranes that mimic biological function which is readily adaptable for high throughput screening.  相似文献   

6.
Functional biological synthetic composite (BSC) membranes were made using phospholipids, biological membrane proteins and permeable synthetic supports or membranes. Lipid bilayers were formed on porous polycarbonate (PC), polyethylene terephthalate (PETE) and poly (l-lactic acid) (PLLA) membranes and in 10-100 microm laser-drilled pores in a 96-well plastic plate as measured by increased resistance or decreased currents. Bilayers in 50 microm and smaller pores were stable for up to 4 h as measured by resistance changes or a current after gramicidin D reconstitution. Biological membrane transport reconstitution was then carried out. Using vesicles containing Kv1.5 K(+) channels, K(+) currents and decreased resistance were measured across bilayers in 50 microm pores in the plastic plate and PLLA membranes, respectively, which were inhibited by compound B, a Kv1.5 K(+) channel inhibitor. Functional reconstitution of Kv1.5 K(+) channels was successful. Incorporation of membrane proteins in functional form in stable permeable membrane-supported lipid bilayers is a simple technology to create BSC membranes that mimic biological function which is readily adaptable for high throughput screening.  相似文献   

7.
Complex facilitative membrane transporters of specific ligands may operate via inner channels subject to conformational transitions. To describe some properties of these systems, we introduce here a kinetic model of coupled transport of two species, L and w, through a two-conformational pore. The basic assumptions of the model are: a) single-file of, at most, n molecules inside the channel; b) each pore state is open to one of the compartments only; c) there is at most only one vacancy per pore; d) inside the channel, a molecule of L occupies the same positions as a molecule of w; and e) there is at most only one molecule of L per pore. We develop a general representation of the kinetic diagram of the model that is formally similar to the one used to describe one-vacancy transport through a one-conformational single-file pore. In many cases of biological importance, L could be a hydrophilic (ionic or nonionic) ligand and w could be water. The model also finds application to describe solute (w) transport under saturation conditions. In this latter case, L would be another solute, or a tracer of w. We derive steady-state expressions for the fluxes of L and w, and for the permeability coefficients. The main results obtained from the analysis of the model are the following. 1) Under the condition of equilibrium of w, the expression derived for the flux of L is formally indistinguishable from the one obtainable from a standard four-state model of ligand transport mediated by a two-conformational transporter. 2) When L is a tracer of w, we can derive an expression for the ratio between the main isotope and tracer permeability coefficients (Pw/Pd). We find that the near-equilibrium permeability ratio satisfies (n - 1) < or = (Pw/Pd)eq < or = n, a result previously derived for the one-conformational, single-file pore for the case that n > or = 2. 3) The kinetic model studied here represents a generalization of the carrier concept. In fact, for the case that n = 1 (corresponding to the classical single-occupancy carrier), the near-equilibrium permeability ratio satisfies 0 < or = (Pw/Pd)eq < or = 1, which is characteristic of a carrier performing exchange-diffusion.  相似文献   

8.
Chromaffin granules are involved in catecholamine synthesis and traffic in the adrenal glands. The transporting membrane proteins of chromaffin granules play an important role in the ion homeostasis of these organelles. In this study, we characterized components of the electrogenic 86Rb+ flux observed in isolated chromaffin granules. In order to study single channel activity, chromaffin granules from the bovine adrenal medulla were incorporated into planar lipid bilayers. Four types of cationic channel were found, each with a different conductance. The unitary conductances of the potassium channels are 360 ± 10 pS, 220 ± 8 pS, 152 ± 8 pS and 13 ± 3 pS in a gradient of 450/150 mM KCl, pH 7.0. A multiconductance potassium channel with a conductivity of 110 ± 8 pS and 31 ± 4 pS was also found. With the exception of the 13 pS conductance channel, all are activated by depolarizing voltages. One type of chloride channel was also found. It has a unitary conductance of about 250 pS in a gradient of 500/150 mM KCl, pH 7.0.  相似文献   

9.
Outer membrane protein A (OmpA), a major structural protein of the outer membrane of Escherichia coli, consists of an N-terminal 8-stranded beta-barrel transmembrane domain and a C-terminal periplasmic domain. OmpA has served as an excellent model for studying the mechanism of insertion, folding, and assembly of constitutive integral membrane proteins in vivo and in vitro. The function of OmpA is currently not well understood. Particularly, the question whether or not OmpA forms an ion channel and/or nonspecific pore for uncharged larger solutes, as some other porins do, has been controversial. We have incorporated detergent-purified OmpA into planar lipid bilayers and studied its permeability to ions by single channel conductance measurements. In 1 M KCl, OmpA formed small (50-80 pS) and large (260-320 pS) channels. These two conductance states were interconvertible, presumably corresponding to two different conformations of OmpA in the membrane. The smaller channels are associated with the N-terminal transmembrane domain, whereas both domains are required to form the larger channels. The two channel activities provide a new functional assay for the refolding in vitro of the two respective domains of OmpA. Wild-type and five single tryptophan mutants of urea-denatured OmpA are shown to refold into functional channels in lipid bilayers.  相似文献   

10.
Ion channels of biological membranes are the key proteins that provide for bioelectric functioning of living systems. These proteins are homo- or heterooligomers assembled of several identical or different subunits. Understanding the architectural organization and functioning of ion channels has significantly expanded owing to resolving the crystal structure of several types of voltage-gated and receptor-operated channels. This review summarizes the information obtained from crystal structures of potassium channels, nicotinic acetylcholine receptor, ATP-activated, and other ligand-gated ion channels. Despite the differences in the function, topology, ion selectivity, and subunit stoichiometry, a high similarity in the principles of organization of these macromolecular complexes has been revealed.  相似文献   

11.
Background information. Hsp90 (90 kDa heat‐shock protein) plays a key role in the folding and activation of many client proteins involved in signal transduction and cell cycle control. The cycle of Hsp90 has been intimately associated with large conformational rearrangements, which are nucleotide‐binding‐dependent. However, up to now, our understanding of Hsp90 conformational changes derives from structural information, which refers to the crystal states of either recombinant Hsp90 constructs or the prokaryotic homologue HtpG (Hsp90 prokaryotic homologue). Results and discussion. Here, we present the first nucleotide‐free structures of the entire eukaryotic Hsp90 (apo‐Hsp90) obtained by small‐angle X‐ray scattering and single‐particle cryo‐EM (cryo‐electron microscopy). We show that, in solution, apo‐Hsp90 is in a conformational equilibrium between two open states that have never been described previously. By comparing our cryo‐EM maps with HtpG and known Hsp90 structures, we establish that the structural changes involved in switching between the two Hsp90 apo‐forms require large movements of the NTD (N‐terminal domain) and MD (middle domain) around two flexible hinge regions. Conclusions. The present study shows, for the first time, the structure of the entire eukaryotic apo‐Hsp90, along with its intrinsic flexibility. Although large structural rearrangements, leading to partial closure of the Hsp90 dimer, were previously attributed to the binding of nucleotides, our results reveal that they are in fact mainly due to the intrinsic flexibility of Hsp90 dimer. Taking into account the preponderant role of the dynamic nature of the structure of Hsp90, we reconsider the Hsp90 ATPase cycle.  相似文献   

12.
13.
An experimental study of flexoelectricity in model membranes containing ion pores and native membranes containing ion channels has been undertaken with the objective of determining the relationship, if any, between flexoelectricity and ion transport. Model membrane patches containing ion pores induced by a bluegreen algal toxin, microcystin-LR, and locust muscle membrane patches containing potassium channels were studied using patch-clamp techniques. A correspondence was established between the presence of open channels and pores and the amplitude of the 1st harmonic of the total membrane current when the membranes or patches were subjected to pressure oscillations. The 2nd harmonic of the membrane current provided a measure of the amplitude of a membrane curvature induced by pressure, thus making it possible to determine the membrane flexoelectric coefficient. This study shows that flexoelectricity could be an effective driving force for ion transport through membrane pores and channels, thus further highlighting the possible biological significance of this mechano-electric phenomenon. Correspondence to: P. N. R. Usherwood  相似文献   

14.
The structure of ion channels in membranes of excitable cells   总被引:24,自引:0,他引:24  
N Unwin 《Neuron》1989,3(6):665-676
  相似文献   

15.
A model for the gramicidin A channel is proposed which extends existing models by adding a specific cationic binding site at each entrance to the channel. The binding of ions to these outer channel sites is assumed to shift the energy levels of the inner sites and barriers and thereby alter the channel conductance. The resulting properties are analyzed theoretically for the simplest case of two inner sites and a single energy barrier. This for-site model (two outer and two inner) predicts that the membrane potential at zero current (Uo) should be a Goldman-Hodgkin-Katz equation with concentration-dependent permeability ratios. The coefficients of the concentration-dependent terms are shown to be related to the peak energy shifts of the barrier and to the binding constants of the outer sites. The thory also predicts the channel conductance in symmetrical solutions to exhibit three limiting behaviors, from which the properties of the outer and inner sites can be characterized. In two-cation symmetrical mixtures the conductance as a function of mole fraction is shown to have a minimum, and the related phenomenon of inhibition and block exerted by one ion on the other is explained explicitly by the theory. These various phenomena, having ion interactions in a multiply occupied channel as a common physical basis, are all related (by the theory) through a set of measurable parameters describing the properties of the system.  相似文献   

16.
The action of the 107 kDa hemolysin from Escherichia coli on planar lipid membranes was investigated. We report that a single toxin molecule can form a cation-selective, ion-permeable channel of large conductance in a planar phospholipid bilayer membrane. The conductance of the pore is proportional to that of the bulk solution, indicating that the channel is filled with water. A pore diameter of about 2 nm can be evaluated. The pore formation mechanism is voltage-dependent and essentially resembles that of pore-forming colicins; this implies that opening of the channel is dependent on transfer of an electrical charge through the membrane. We propose that the physiological effects of E. coli hemolysin result from its ability to form ion channels in the membrane of attacked cells, and show that there is quantitative agreement between the effects of this toxin on model membranes and its hemolytic properties.  相似文献   

17.
18.
Bao L  Miao ZW  Zhou PA  Jiang Y  Sha YL  Zhang RJ  Tang YC 《FEBS letters》1999,446(2-3):351-354
A 22-mer peptide, identical to the primary sequence of domain I segment 3 (IS3) of rat brain sodium channel I, was synthesized. With the patch clamp cell-attached technique, single channel currents could be recorded from the patches of cultured rat myotube membranes when the patches were held at hyperpolarized potentials and the electrode solution contained NaCl and 1 microM IS3, indicating that IS3 incorporated into the membranes and formed ion channels. The single channel conductances of IS3 channels were distributed heterogeneously, but mainly in the range of 10-25 pS. There was a tendency that the mean open time and open probability of IS3 channels increased and the mean close time decreased with the increasing of hyperpolarized membrane potentials. IS3 channels are highly selective for Na+ and Li+ but not for Cl- and K+, similar to the authentic Na+ channels.  相似文献   

19.
Parametric resonance and amplification of periodic perturbations in the membrane transport of ions through channels with inactivation was studied in computational experiments. It has been shown that a periodic change in the membrane capacitance or in the applied electric current with a frequency approximately 2 omega 0 (omega 0--the own angular frequency of the membrane) may excite stable self-oscillations in the membrane with a frequency of approximately omega 0. For this to occur, the degree of the capacitance modulation m or the amplitude of the applied current i0 must exceed some critical values mcr and i0cr. Excitation of self-oscillations by alternating electric current of the frequency approximately 2 omega 0 has the characteristics of parametric resonance. This can be explained by the fact that the equivalent membrane inductance depends on ionic current and displays periodic changes with a frequency approximately 2 omega 0, as also does the current. Small-amplitude periodic changes in the capacitance (m less than mcr) with frequencies approximately 2 omega 0 may result in significant amplification of periodic perturbations with frequencies approximately omega 0.  相似文献   

20.
The electrical characteristics of wide membrane channels such as those induced in lipid membranes by alamethicin have been analyzed using an electrodiffusion model. The channel is considered to be a water filled cylinder in which the potential energy barrier is a result of the difference in polarization energy of the ion environment when the ion is located inside as compared to outside of the channel. In addition, an electric field related to the channel structure is assumed. It is shown that without postulating any specific chemical ion-channel interaction one can reproduce experimental membrane potentials for NaCl, KCl, and CaCl2 concentration gradients with a single set of channel parameters. The calculations also yield experimental J-V characteristics of discrete conduction states. In addition, a simple mechanism of interchannel coupling based on the above model is discussed. The model suggests a unifying approach to the problem of the origin of interionic selectivity of membrane channels induced by polyene antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号