首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhang N  Li XJ  Ye M  Pan S  Schwikowski B  Aebersold R 《Proteomics》2005,5(16):4096-4106
In MS/MS experiments with automated precursor ion, selection only a fraction of sequencing attempts lead to the successful identification of a peptide. A number of reasons may contribute to this situation. They include poor fragmentation of the selected precursor ion, the presence of modified residues in the peptide, mismatches with sequence databases, and frequently, the concurrent fragmentation of multiple precursors in the same CID attempt. Current database search engines are incapable of correctly assigning the sequences of multiple precursors to such spectra. We have developed a search engine, ProbIDtree, which can identify multiple peptides from a CID spectrum generated by the concurrent fragmentation of multiple precursor ions. This is achieved by iterative database searching in which the submitted spectra are generated by subtracting the fragment ions assigned to a tentatively matched peptide from the acquired spectrum and in which each match is assigned a tentative probability score. Tentatively matched peptides are organized in a tree structure from which their adjusted probability scores are calculated and used to determine the correct identifications. The results using MALDI-TOF-TOF MS/MS data demonstrate that multiple peptides can be effectively identified simultaneously with high confidence using ProbIDtree.  相似文献   

2.
We report on the effectiveness of CID, HCD, and ETD for LC-FT MS/MS analysis of peptides using a tandem linear ion trap-Orbitrap mass spectrometer. A range of software tools and analysis parameters were employed to explore the use of CID, HCD, and ETD to identify peptides (isolated from human blood plasma) without the use of specific "enzyme rules". In the evaluation of an FDR-controlled SEQUEST scoring method, the use of accurate masses for fragments increased the number of identified peptides (by ~50%) compared to the use of conventional low accuracy fragment mass information, and CID provided the largest contribution to the identified peptide data sets compared to HCD and ETD. The FDR-controlled Mascot scoring method provided significantly fewer peptide identifications than SEQUEST (by 1.3-2.3 fold) and CID, HCD, and ETD provided similar contributions to identified peptides. Evaluation of de novo sequencing and the UStags method for more intense fragment ions revealed that HCD afforded more contiguous residues (e.g., ≥ 7 amino acids) than either CID or ETD. Both the FDR-controlled SEQUEST and Mascot scoring methods provided peptide data sets that were affected by the decoy database used and mass tolerances applied (e.g., identical peptides between data sets could be limited to ~70%), while the UStags method provided the most consistent peptide data sets (>90% overlap). The m/z ranges in which CID, HCD, and ETD contributed the largest number of peptide identifications were substantially overlapping. This work suggests that the three peptide ion fragmentation methods are complementary and that maximizing the number of peptide identifications benefits significantly from a careful match with the informatics tools and methods applied. These results also suggest that the decoy strategy may inaccurately estimate identification FDRs.  相似文献   

3.
Protein and peptide mass analysis and amino acid sequencing by mass spectrometry is widely used for identification and annotation of post-translational modifications (PTMs) in proteins. Modification-specific mass increments, neutral losses or diagnostic fragment ions in peptide mass spectra provide direct evidence for the presence of post-translational modifications, such as phosphorylation, acetylation, methylation or glycosylation. However, the commonly used database search engines are not always practical for exhaustive searches for multiple modifications and concomitant missed proteolytic cleavage sites in large-scale proteomic datasets, since the search space is dramatically expanded. We present a formal definition of the problem of searching databases with tandem mass spectra of peptides that are partially (sub-stoichiometrically) modified. In addition, an improved search algorithm and peptide scoring scheme that includes modification specific ion information from MS/MS spectra was implemented and tested using the Virtual Expert Mass Spectrometrist (VEMS) software. A set of 2825 peptide MS/MS spectra were searched with 16 variable modifications and 6 missed cleavages. The scoring scheme returned a large set of post-translationally modified peptides including precise information on modification type and position. The scoring scheme was able to extract and distinguish the near-isobaric modifications of trimethylation and acetylation of lysine residues based on the presence and absence of diagnostic neutral losses and immonium ions. In addition, the VEMS software contains a range of new features for analysis of mass spectrometry data obtained in large-scale proteomic experiments. Windows binaries are available at http://www.yass.sdu.dk/.  相似文献   

4.
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.  相似文献   

5.
Tandem mass spectrometry (MS/MS) allows for the rapid identification of many types of post-translational modifications (PTMs), especially those that can be detected by a diagnostic mass shift in one or more peptide fragment ions (for example, phosphorylation). But some PTMs (for example, SUMOs and other ubiquitin-like modifiers) themselves produce multiple fragment ions; combined with fragments from the modified target peptide, a complex overlapping fragmentation pattern is thus generated, which is uninterpretable by standard peptide sequencing software. Here we introduce SUMmOn, an automated pattern recognition tool that detects diagnostic PTM fragment ion series within complex MS/MS spectra, to identify modified peptides and modification sites within these peptides. Using SUMmOn, we demonstrate for the first time that human SUMO-1 multimerizes in vitro primarily via three N-terminal lysines, Lys7, Lys16 and Lys17. Notably, our method is theoretically applicable to any type of modification or chemical moiety generating a unique fragment ion pattern.  相似文献   

6.
Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well‐studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor‐based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K‐nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20–60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.  相似文献   

7.
Fourier transform-all reaction monitoring (FT-ARM) is a novel approach for the identification and quantification of peptides that relies upon the selectivity of high mass accuracy data and the specificity of peptide fragmentation patterns. An FT-ARM experiment involves continuous, data-independent, high mass accuracy MS/MS acquisition spanning a defined m/z range. Custom software was developed to search peptides against the multiplexed fragmentation spectra by comparing theoretical or empirical fragment ions against every fragmentation spectrum across the entire acquisition. A dot product score is calculated against each spectrum to generate a score chromatogram used for both identification and quantification. Chromatographic elution profile characteristics are not used to cluster precursor peptide signals to their respective fragment ions. FT-ARM identifications are demonstrated to be complementary to conventional data-dependent shotgun analysis, especially in cases where the data-dependent method fails because of fragmenting multiple overlapping precursors. The sensitivity, robustness, and specificity of FT-ARM quantification are shown to be analogous to selected reaction monitoring-based peptide quantification with the added benefit of minimal assay development. Thus, FT-ARM is demonstrated to be a novel and complementary data acquisition, identification, and quantification method for the large scale analysis of peptides.  相似文献   

8.
An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions.In MS-based proteomics, peptides are matched to peptide sequences in databases using search engines (13). Statistical criteria are established for accepted versus rejected peptide spectra matches based on the search engine score, and usually a 99% certainty is required for reported peptides. The search engines typically only take sequence specific backbone fragmentation into account (i.e. a, b, and y ions) and some of their neutral losses. However, tandem mass spectra—especially of larger peptides—can be quite complex and contain a number of medium or even high abundance peptide fragments that are not annotated by the search engine result. This can result in uncertainty for the user—especially if only relatively few peaks are annotated—because it may reflect an incorrect identification. However, the most common cause of unlabeled peaks is that another peptide was present in the precursor selection window and was cofragmented. This has variously been termed “chimeric spectra” (46), or the problem of low precursor ion fraction (PIF)1 (7). Such spectra may still be identifiable with high confidence. The Andromeda search engine in MaxQuant, for instance, attempts to identify a second peptide in such cases (8, 9). However, even “pure” spectra (those with a high PIF) often still contain many unassigned peaks. These can be caused by different fragment types, such as internal ions, single or combined neutral losses as well as immonium and other ion types in the low mass region. A mass spectrometric expert can assign many or all of these peaks, based on expert knowledge of fragmentation and manual calculation of fragment masses, resulting in a higher degree of confidence for the identification. However, there are more and more practitioners of proteomics without in depth training or experience in annotating MS/MS spectra and such annotation would in any case be prohibitive for hundreds of thousands of spectra. Furthermore, even human experts may wrongly annotate a given peak—especially with low mass accuracy tandem mass spectra—or fail to consider every possibility that could have resulted in this fragment mass.Given the desirability of annotating fragment peaks to the highest degree possible, we turned to “Expert Systems,” a well-established technology in computer science. Expert Systems achieved prominence in the 1970s and 1980s and were meant to solve complex problems by reasoning about knowledge (10, 11). Interestingly, one of the first examples was developed by Nobel Prize winner Joshua Lederberg more than 40 years ago, and dealt with the interpretation of mass spectrometric data. The program''s name was Heuristic DENTRAL (12), and it was capable of interpreting the mass spectra of aliphatic ethers and their fragments. The hypotheses produced by the program described molecular structures that are plausible explanations of the data. To infer these explanations from the data, the program incorporated a theory of chemical stability that provided limiting constraints as well as heuristic rules.In general, the aim of an Expert System is to encode knowledge extracted from professionals in the field in question. This then powers a rule-based system that can be applied broadly and in an automated manner. A rule-based Expert System represents the information obtained from human specialists in the form of IF-THEN rules. These are used to perform operations on input data to reach appropriate conclusion. A generic Expert System is essentially a computer program that provides a framework for performing a large number of inferences in a predictable way, using forward or backward chains, backtracking, and other mechanisms (13). Therefore, in contrast to statistics based learning, the “expert program” does not know what it knows through the raw volume of facts in the computer''s memory. Instead, like a human expert, it relies on a reasoning-like process of applying an empirically derived set of rules to the data.Here we implemented an Expert System for the interpretation for high mass accuracy tandem mass spectrometry data of peptides. It was developed in an iterative manner together with human experts on peptide fragmentation, using the published literature on fragmentation pathways as well as large data sets of higher-energy collisional dissociation (HCD) (14) and collision-induced dissociation (CID) based peptide identifications. Our goal was to achieve an annotation performance similar or better than experienced mass spectrometrists (15), thus making comprehensively annotated peptide spectra available in large scale proteomics.  相似文献   

9.
High mass measurement accuracy is critical for confident protein identification and characterization in proteomics research. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry is a unique technique which can provide unparalleled mass accuracy and resolving power. However, the mass measurement accuracy of FTICR-MS can be affected by space charge effects. Here, we present a novel internal calibrant-free calibration method that corrects for space charge-induced frequency shifts in FTICR fragment spectra called Calibration Optimization on Fragment Ions (COFI). This new strategy utilizes the information from fixed mass differences between two neighboring peptide fragment ions (such as y(1) and y(2)) to correct the frequency shift after data collection. COFI has been successfully applied to LC-FTICR fragmentation data. Mascot MS/MS ion search data demonstrate that most of the fragments from BSA tryptic digested peptides can be identified using a much lower mass tolerance window after applying COFI to LC-FTICR-MS/MS of BSA tryptic digest. Furthermore, COFI has been used for multiplexed LC-CID-FTICR-MS which is an attractive technique because of its increased duty cycle and dynamic range. After the application of COFI to a multiplexed LC-CID-FTICR-MS of BSA tryptic digest, we achieved an average measured mass accuracy of 2.49 ppm for all the identified BSA fragments.  相似文献   

10.
Stable isotope tagging methods have enabled relative quantitation of proteins between samples in LC-MS/MS analyses. However, most such methods are not applicable to the differential quantitation of modified proteins because the isotope tagging reagents only react with certain peptides or because the reagents incorporate a mass increment that is too small to allow reliable quantitation on low resolution ion trap MS instruments. Here, we describe the use of d0- and d5-phenyl isocyanate (PIC) as N-terminal reactive tags for essentially all peptides in proteolytic digests. PIC reacts quantitatively with peptide N-terminal amines within minutes at neutral pH and the PIC-labeled peptides undergo informative MS/MS fragmentation. Ratios of d0- and d5-PIC-labeled derivatives of several model peptides were linear across a 10000-fold range of peptide concentration ratios, thus indicating a wide dynamic range for quantitation. Application of PIC labeling enabled relative quantitation of several styrene oxide adducts of human hemoglobin in LC-MS/MS analyses. PIC labeling offers a versatile means of quantifying changes in modified or variant protein forms in paired samples.  相似文献   

11.
12.
The Mascot score (M-score) is one of the conventional validity measures in data base identification of peptides and proteins by MS/MS data. Although tremendously useful, M-score has a number of limitations. For the same MS/MS data, M-score may change if the protein data base is expanded. A low M-value may not necessarily mean poor match but rather poor MS/MS quality. In addition M-score does not fully utilize the advantage of combined use of complementary fragmentation techniques collisionally activated dissociation (CAD) and electron capture dissociation (ECD). To address these issues, a new data base-independent scoring method (S-score) was designed that is based on the maximum length of the peptide sequence tag provided by the combined CAD and ECD data. The quality of MS/MS spectra assessed by S-score allows poor data (39% of all MS/MS spectra) to be filtered out before the data base search, speeding up the data analysis and eliminating a major source of false positive identifications. Spectra with below threshold M-scores (poor matches) but high S-scores are validated. Spectra with zero M-score (no data base match) but high S-score are classified as belonging to modified sequences. As an extension of S-score, an extremely reliable sequence tag was developed based on complementary fragments simultaneously appearing in CAD and ECD spectra. Comparison of this tag with the data base-derived sequence gives the most reliable peptide identification validation to date. The combined use of M- and S-scoring provides positive sequence identification from >25% of all MS/MS data, a 40% improvement over traditional M-scoring performed on the same Fourier transform MS instrumentation. The number of proteins reliably identified from Escherichia coli cell lysate hereby increased by 29% compared with the traditional M-score approach. Finally S-scoring provides a quantitative measure of the quality of fragmentation techniques such as the minimum abundance of the precursor ion, the MS/MS of which gives the threshold S-score value of 2.  相似文献   

13.
We report an isotope labeling shotgun proteome analysis strategy to validate the spectrum-to-sequence assignments generated by using sequence-database searching for the construction of a more reliable MS/MS spectral library. This strategy is demonstrated in the analysis of the E. coli K12 proteome. In the workflow, E. coli cells were cultured in normal and (15)N-enriched media. The differentially labeled proteins from the cell extracts were subjected to trypsin digestion and two-dimensional liquid chromatography quadrupole time-of-flight tandem mass spectrometry (2D-LC QTOF MS/MS) analysis. The MS/MS spectra of the two samples were individually searched using Mascot against the E. coli proteome database to generate lists of peptide sequence matches. The two data sets were compared by overlaying the spectra of unlabeled and labeled matches of the same peptide sequence for validation. Two cutoff filters, one based on the number of common fragment ions and another one on the similarity of intensity patterns among the common ions, were developed and applied to the overlaid spectral pairs to reject the low quality or incorrectly assigned spectra. By examining 257,907 and 245,156 spectra acquired from the unlabeled and (15)N-labeled samples, respectively, an experimentally validated MS/MS spectral library of tryptic peptides was constructed for E. coli K12 that consisted of 9,302 unique spectra with unique sequence and charge state, representing 7,763 unique peptide sequences. This E. coli spectral library could be readily expanded, and the overall strategy should be applicable to other organisms. Even with this relatively small library, it was shown that more peptides could be identified with higher confidence using the spectral search method than by sequence-database searching.  相似文献   

14.
The Virtual Expert Mass Spectrometrist (VEMS) program package was developed for flexible, automated, and manual de novo tandem mass spectrometry (MS/MS) protein sequencing, and includes accessory programs for matrix-assisted laser desorption/ionization-mass spectrometry (MS) interpretation, and generation of protein and peptide databases. VEMS V2.0 has been developed into a fast tool for combining database-independent and -dependent protein assignments in an extended analysis of MS/MS-peptide data. MS or MS/MS data can be directly recalibrated after the first search by fitting the data to the best search result using polynomial equations. The score function is an improvement of known scoring algorithms and can be adapted for any MS instrument type. In addition, VEMS offers a novel statistical model for evaluating the significance of the protein assignment. The novel features are illustrated by the analysis of the fragmentation spectra obtained by liquid chromatrography-MS/MS analysis of peptides from an anionic peroxidase enriched protein fraction from potato root tissue. The extended analysis mode resulted in the additional assignment of spectra for nine modified tryptic peptides and nine miscleaved peptides, in addition to the 45 spectra from regular tryptic peptides. Of the nine modified peptides, three were glycosylated.  相似文献   

15.
The use of electron transfer dissociation (ETD) fragmentation for analysis of peptides eluting in liquid chromatography tandem mass spectrometry experiments is increasingly common and can allow identification of many peptides and proteins in complex mixtures. Peptide identification is performed through the use of search engines that attempt to match spectra to peptides from proteins in a database. However, software for the analysis of ETD fragmentation data is currently less developed than equivalent algorithms for the analysis of the more ubiquitous collision-induced dissociation fragmentation spectra. In this study, a new scoring system was developed for analysis of peptide ETD fragmentation data that varies the ion type weighting depending on the precursor ion charge state and peptide sequence. This new scoring regime was applied to the analysis of data from previously published results where four search engines (Mascot, Open Mass Spectrometry Search Algorithm (OMSSA), Spectrum Mill, and X!Tandem) were compared (Kandasamy, K., Pandey, A., and Molina, H. (2009) Evaluation of several MS/MS search algorithms for analysis of spectra derived from electron transfer dissociation experiments. Anal. Chem. 81, 7170–7180). Protein Prospector identified 80% more spectra at a 1% false discovery rate than the most successful alternative searching engine in this previous publication. These results suggest that other search engines would benefit from the application of similar rules.The recently developed fragmentation approach of electron transfer dissociation (ETD)1 has become a genuine alternative to the more ubiquitous collision-induced dissociation (CID) for high throughput and high sensitivity proteomic analysis (13). ETD (4) and the related fragmentation process electron capture dissociation (ECD) (5) have been demonstrated to have particular advantages for the analysis of large peptides and small proteins (68) as well as the analysis of peptides bearing labile post-translational modifications (911). The results achieved through ETD and ECD analysis have been shown to be highly complementary to those obtained through CID fragmentation analysis, both through increasing confidence in particular identifications of peptides and also by allowing identification of extra components in complex mixtures (10, 12, 13). As CID and ETD can be sequentially or alternatively performed on precursor ions in the same mass spectrometric run, it is expected that the combined use of these two fragmentation analysis techniques will become increasingly common to enable more comprehensive sample analysis.Software for analysis of CID spectra is significantly more advanced than that for ECD/ETD data. This is partly because the behavior of peptides under CID fragmentation is better characterized and understood so software has been developed that is better able to predict the fragment ions expected. The fragment ion types observed in ETD and ECD are largely known (5, 14, 15), but information about the frequency and peak intensities of the different ion types observed is less well documented.We recently performed a study to characterize how frequently the different fragment ion types are detected in ETD spectra when analyzing complex digest mixtures produced by proteolytic enzymes or chemical cleavage reagents of different sequence specificity (16). These results were analyzed with respect to precursor charge state and location of basic residues, which were both shown to be significant factors in controlling the fragment ion types observed. The results showed that ETD spectra of doubly charged precursor ions produced very different fragment ions depending on the location of a basic residue in the sequence.Based on this statistical analysis of ETD data from a diverse range of peptides (16), in the present study, a new scoring system was developed and implemented in the search engine Batch-Tag within Protein Prospector that adjusts the weighting for different fragment ion types based on the precursor charge state and the presence of basic amino acid residues at either peptide terminus. The results using this new scoring system were compared with the previous generation of Batch-Tag, which used ion score weightings based on the average frequency of observation of different fragment types in ETD spectra of tryptic peptides and used the same scoring irrespective of precursor charge and sequence. The performance of this new scoring was also compared with those reported by other search engines using results previously published from a large standard data set (17). The new scoring system allowed identification of significantly more spectra than achieved with the previous scoring system. It also assigned 80% more spectra than the most successful of the compared search engines when using the same false discovery rate threshold.  相似文献   

16.
Villén J  Beausoleil SA  Gygi SP 《Proteomics》2008,8(21):4444-4452
Phosphopeptide identification and site determination are major challenges in biomedical MS. Both are affected by frequent and often overwhelming losses of phosphoric acid in ion trap CID fragmentation spectra. These losses are thought to translate into reduced intensities of sequence informative ions and a general decline in the quality of MS/MS spectra. To address this issue, several methods have been proposed, which rely on extended fragmentation schemes including collecting MS3 scans from neutral loss-containing ions and multi-stage activation to further fragment these same ions. Here, we have evaluated the utility of these methods in the context of a large-scale phosphopeptide analysis strategy with current instrumentation capable of accurate precursor mass determination. Remarkably, we found that MS3-based schemes did not increase the overall number of confidently identified peptides and had only limited value in site localization. We conclude that the collection of MS3 or pseudo-MS3 scans in large-scale proteomics studies is not worthwhile when high-mass accuracy instrumentation is used.  相似文献   

17.
Although tandem mass spectrometry (MS/MS) has become an integral part of proteomics, intensity patterns in MS/MS spectra are rarely weighted heavily in most widely used algorithms because they are not yet fully understood. Here a knowledge mining approach is demonstrated to discover fragmentation intensity patterns and elucidate the chemical factors behind such patterns. Fragmentation intensity information from 28 330 ion trap peptide MS/MS spectra of different charge states and sequences went through unsupervised clustering using a penalized K-means algorithm. Without any prior chemistry assumptions, four clusters with distinctive fragmentation patterns were obtained. A decision tree was generated to investigate peptide sequence motif and charge state status that caused these fragmentation patterns. This data-mining scheme is generally applicable for any large data sets. It bypasses the common prior knowledge constraints and reports on the overall peptide fragmentation behavior. It improves the understanding of gas-phase peptide dissociation and provides a foundation for new or improved protein identification algorithms.  相似文献   

18.
One of the challenges associated with large-scale proteome analysis using tandem mass spectrometry (MS/MS) and automated database searching is to reduce the number of false positive identifications without sacrificing the number of true positives found. In this work, a systematic investigation of the effect of 2MEGA labeling (N-terminal dimethylation after lysine guanidination) on the proteome analysis of a membrane fraction of an Escherichia coli cell extract by 2-dimensional liquid chromatography MS/MS is presented. By a large-scale comparison of MS/MS spectra of native peptides with those from the 2MEGA-labeled peptides, the labeled peptides were found to undergo facile fragmentation with enhanced a1 or a1-related (a(1)-17 and a(1)-45) ions derived from all N-terminal amino acids in the MS/MS spectra; these ions are usually difficult to detect in the MS/MS spectra of nonderivatized peptides. The 2MEGA labeling alleviated the biased detection of arginine-terminated peptides that is often observed in MALDI and ESI MS experiments. 2MEGA labeling was found not only to increase the number of peptides and proteins identified but also to generate enhanced a1 or a1-related ions as a constraint to reduce the number of false positive identifications. In total, 640 proteins were identified from the E. coli membrane fraction, with each protein identified based on peptide mass and sequence match of one or more peptides using MASCOT database search algorithm from the MS/MS spectra generated by a quadrupole time-of-flight mass spectrometer. Among them, the subcellular locations of 336 proteins are presently known, including 258 membrane and membrane-associated proteins (76.8%). Among the classified proteins, there was a dramatic increase in the total number of integral membrane proteins identified in the 2MEGA-labeled sample (153 proteins) versus the unlabeled sample (77 proteins).  相似文献   

19.
Mass spectrometry (MS) analysis of peptides carrying post‐translational modifications is challenging due to the instability of some modifications during MS analysis. However, glycopeptides as well as acetylated, methylated and other modified peptides release specific fragment ions during CID (collision‐induced dissociation) and HCD (higher energy collisional dissociation) fragmentation. These fragment ions can be used to validate the presence of the PTM on the peptide. Here, we present PTM MarkerFinder, a software tool that takes advantage of such marker ions. PTM MarkerFinder screens the MS/MS spectra in the output of a database search (i.e., Mascot) for marker ions specific for selected PTMs. Moreover, it reports and annotates the HCD and the corresponding electron transfer dissociation (ETD) spectrum (when present), and summarizes information on the type, number, and ratios of marker ions found in the data set. In the present work, a sample containing enriched N‐acetylhexosamine (HexNAc) glycopeptides from yeast has been analyzed by liquid chromatography‐mass spectrometry on an LTQ Orbitrap Velos using both HCD and ETD fragmentation techniques. The identification result (Mascot .dat file) was submitted as input to PTM MarkerFinder and screened for HexNAc oxonium ions. The software output has been used for high‐throughput validation of the identification results.  相似文献   

20.
The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号