首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microwave (2450 MHz, 1250 W), ultrasonic (20 kHz, 400 W) and chemo-mechanical (MicroSludge® with 900 mg/L NaOH followed by 83,000 kPa) pretreatments were applied to pulp mill waste sludge to enhance methane production and reduce digester sludge retention time. The effects of four variables (microwave temperature in a range of 50-175 °C) and sonication time (15-90 min), sludge type (primary or secondary) and digester temperature (mesophilic and thermophilic) were investigated. Microwave pretreatment proved to be the most effective, increasing specific methane yields of WAS samples by 90% compared to controls after 21 days of mesophilic digestion. Sonication solubilized the sludge samples better, but resulted in soluble non-biodegradable compounds. Based on the laboratory scale data, MicroSludge® was found the least energy intensive pretreatment followed by sonication for 15 min alternative with net energy profits of 1366 and 386 kWh/tonne of total solids (TS), respectively. Pretreatment benefits were smaller for thermophilic digesters.  相似文献   

2.
The aim of this work was to study the effect of ultra sound treatment on the solid content of sludge and biological activity, and the increase in the soluble chemical oxygen demand (SCOD), proteins and nucleic acids concentrations during sonication. The results showed that sonication effectively degraded and inactivated the sludge. The sludge disintegration and cell lysis occurred continuously while sludge inactivation mainly occurred in the second stage (10-30 min) during sonication. The SCOD, supernatant proteins and nucleic acids concentrations, and sludge mass reduction and inactivation degrees increased with the sonication time and power density increases. Higher energy ultrasound was more efficient than lower energy ultrasound for the sludge treatment.  相似文献   

3.
Using acoustic cavitation to improve the bio-activity of activated sludge   总被引:1,自引:1,他引:0  
This paper studied a new method to improve the microbial activity of the activated sludge for wastewater treatment. Concentrated sludge was sonicated in an extra chamber for short period and then returned to the activated sludge system. The results showed that the bio-activity of the activated sludge, expressed as oxygen utilization rate (OUR), could be enhanced by ultrasonic irradiation. Powerful ultrasound (in the magnitude of W/ml) was much more effective than weak ultrasound (in the magnitude of W/L) in stimulating the activated sludge, but too strong sonication (power density higher than 0.5 W/ml) disintegrated the sludge and thus decreased the sludge activity. Low frequency (25 kHz) was more effective than higher ones (80 kHz and 150 kHz), indicating that mechanical effects, instead of free radicals, were responsible for the bio-activity enhancement. The optimal sonication conditions were sound frequency of 25 kHz, power density of 0.2 W/ml and duration of 30s; under which the sludge OUR increased by 28%, the bio-mass growth rate increased by 12.5%, and the wastewater chemical oxygen demand (COD) and total nitrogen removal efficiency increased by 5-6%.  相似文献   

4.
Dewaterability of waste activated sludge with ultrasound conditioning   总被引:5,自引:0,他引:5  
Feng X  Deng J  Lei H  Bai T  Fan Q  Li Z 《Bioresource technology》2009,100(3):1074-1081
This study investigated the potential benefits of ultrasound-conditioned sludge dewatering treatments with specific energy dosages from 0 to 35,000 kJ/kg total solids (TS). Capillary suction time (CST) and specific resistance of filtration (SRF) were used to evaluate sludge dewaterability. Sludge water distribution was measured by the drying test and mechanical separation methods. Both extracellular polymeric substance (EPS) content and sludge particle size were determined in an attempt to explain the observed changes in sludge dewaterability. The results indicated that application of low specific energy dosages (<4400 kJ/kg TS) slightly enhanced sludge dewaterability, but larger specific energy dosages (>4400 kJ/kg TS) significantly deteriorated sludge dewaterability. The optimal specific energy to give maximal dewaterability characteristics was found to be 800 kJ/kg TS, which generated sludge with optimal EPS concentration (400-500 mg/l) and particle size distribution (80-90 microm diameter). Subjecting sludge to a combination of cationic polymer and ultrasound pretreatments did not present any clear advantages over polymeric conditioning alone for improving sludge dewaterability. The effects of cationic polymer treatment predominated over those of ultrasound pretreatment when both were used together.  相似文献   

5.
The use of ultrasound pretreatment to enhance liquefaction and saccharification of cassava chips was investigated. Cassava chip slurry samples were subjected to sonication for 10-40 s at three power levels of low (2 W/mL), medium (5 W/mL), and high (8 W/mL). The samples were simultaneously exposed to enzymes to convert starch into glucose. The cassava particle size declined nearly 40-fold following ultrasonic pretreatment at high power input. Scanning electron micrographs of both unsonicated (control) and sonicated samples showed disruption of fibrous material in cassava chips but did not affect the granular structure of starch. Reducing sugar release improved in direct proportion to the power input and sonication time. The reducing sugar increase was as much as 180% with respect to the control groups. The slurry samples with enzyme addition during sonication resulted in better reducing sugar release than the samples with enzyme addition after sonication. The heat generated during sonication below starch gelatinization temperature apparently had no effect on the reducing sugar release. The reducing sugar yield and energy efficiency of ultrasound pretreated samples increased with total solids (TS) contents. The highest reducing sugar yield of 22 g/100 g of sample and efficiency of 323% were obtained for cassava slurry with 25% TS at high power. The reducing sugar yield at the completion of reaction (R(infinity)) were over twofold higher compared to the control groups. The integration of ultrasound into a cassava-based ethanol plant may significantly improve the overall ethanol yield.  相似文献   

6.
A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.  相似文献   

7.
The effect of ultrasound and gamma-irradiation used as pre-treatments for the anaerobic digestion of waste activated sludge at both mesophilic and thermophilic temperatures was examined. Untreated activated sludge was also subjected to anaerobic digestion at these temperatures as a control. The sonication time was 90 s using a Soniprep 150 (MSE Scientific Instruments) which operated at 23 kHz and had been adjusted to give an output of 47 W and the gamma-irradiation dose was 500 krad. The digesters were operated in a semi-continuous mode, being fed with fresh sludge every 24 h at hydraulic retention times (HRT) of 8, 10 and 12 days. Over the 24 h period the differences between the digesters, in terms of volatile solids (VS) reductions and biogas production, were not statistically significant for any particular set of conditions. Thermophilic digestion performed better than mesophilic digestion in terms of biogas production, VS reductions (except at HRT of 8 days) and specific methane yields and the optimum retention time was 10 days, at both temperatures. When gas production over the initial eight hours (probably the hydrolytic stage) was examined, it was found that the gas production rates for pre-treated sludges were higher than those for untreated sludges. This was most pronounced at thermophilic temperatures and a HRT of 10 days. Sonication did not affect the numbers of faecal coliforms in the sludge. However, gamma-radiation caused a 3-log reduction and, when coupled with mesophilic digestion, gave a product which contained < 100 g(-1) TS. Thermophilic anaerobic digestion produced sludges which contained < 1 g(-1) TS irrespective of any pre-treatment.  相似文献   

8.
Anaerobic co-digestion of fruit and vegetable waste (FVW) and activated sludge (AS) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of AS:FVW ratio and the organic loading rate (OLR) on digesters performances were examined. The mixtures having AS:FVW ratios of 100:00, 65:35, 35:65, by a total solid (TS) basis were operated at an hydraulic retention time (HRT) of 20d. However, 30:70, 20:80, 15:85, 10:90 and 0:100 ratios were tested at an HRT of 10d. To investigate effects of aerobic and anaerobic digestion on the sludge filterability, specific resistance to filtration (R) was also determined. Increasing FVW proportions in the feedstock significantly improved the biogas production yield. The reactor that was fed with a 30:70 ratio showed the highest VS removal and biogas production yield of 88% and 0.57 L g(-1) VS added, respectively. The filterability results showed that the anaerobic effluent was characterised by a slightly better filterability efficiency of 1.6 x 10(16) m kg(-1) than 1.74 x 10(16) m kg(-1) of aerobic effluent. However, FVW addition improved the anaerobic co-digestion effluent filterability (5.52 x 10(14) m kg(-1)).  相似文献   

9.
The mesophilic anaerobic treatment of concentrated sludge from an Atlantic salmon smolt hatchery (total solids (TS): 6.3-12.3wt%) was investigated in a continuous stirred tank reactor (CSTR) at 35 degrees C and 55-60 days hydraulic retention time (HRT). COD-stabilization between 44% and 54% and methane yields between 0.140 and 0.154l/g COD added (0.260-0.281l/g VS added) were achieved. The process was strongly inhibited, with volatile fatty acid concentrations of up to 28 g/l. But the buffer capacity was sufficient to keep the pH-value at 7.4-7.55 during the whole operation. The fertilizing value of the treated sludge was estimated to be 3.4-6.8 kg N and 1.2-2.4 kg P per ton. However, the high VFA content would necessitate special means of application. The energy from the methane that was achieved in the present study would be sufficient to cover about 2-4% of the energy demands of a flow-through hatchery.  相似文献   

10.
城市污泥添加厨余垃圾厌氧发酵产挥发性脂肪酸的研究   总被引:1,自引:0,他引:1  
张莉  刘和  陈坚 《工业微生物》2011,41(2):26-31
为了考察污泥产酸工业化的可行性和添加食品废弃物对污泥产酸的影响,本实验在实验室的基础上进行扩大研究,考察了不同的底物总固体浓度对产挥发性脂肪酸的影响.结果显示添加厨余垃圾之后挥发性脂肪酸的累积量可达到17.62g/L.综合产挥发性脂肪酸效果、底物降解效果和产率等情况建议在较大规模的生产过程中选择130g/L的底物浓度为...  相似文献   

11.
The effect of the trace metal cobalt on the conversion of methanol in an upflow anaerobic sludge bed (UASB) reactor was investigated by studying the effect of cobalt deprivation from the influent on the reactor efficiency and the sludge characteristics. A UASB reactor (30 degrees C; pH 7) was operated for 261 days at a 12-h hydraulic retention time (HRT). The loading rate was increased stepwise from 2.6 g chemical oxygen demand (COD) x L reactor(-1) x d(-1) to 7.8 g COD x L reactor(-1) x d(-1). Cobalt deprivation had a strong impact on the methanogenic activity of the sludge. In batch tests, the methanogenic activity of the sludge with methanol as the substrate increased 5.3 (day 28) and 2.1 (day 257) times by addition of 840 nM of cobalt. The sludge had an apparent K(m) for cobalt of 948 nM after 28 days of operation and 442 nM at the end of the run. Cobalt deprivation during 54 days of operation led to a methanol conversion efficiency of only 55%. Continuous addition of cobalt (330 nM) for 33 days improved the methanol removal efficiency to 100%. In this period of cobalt dosing, the cobalt concentration in the sludge increased 2.7 times up to 32 microg x g TSS(-1). Upon omission of the cobalt addition, cobalt washed-out at a stable rate of 0.1 microg x g VSS(-1) x d(-1). At the end of the run, the cobalt concentration of the sludge was similar to that of the seed sludge.  相似文献   

12.
The mesophilic anaerobic treatment of sludge from saline fish farm effluents (total solids (TS): 8.2-10.2 wt%, chemical oxygen demand (COD): 60-74 g/l, sodium (Na): 10-10.5 g/l) was carried out in continuously stirred tank reactors (CSTRs) at 35 degrees C. COD stabilization between 36% and 55% and methane yields between 0.114 and 0.184 l/g COD added were achieved. However, the process was strongly inhibited, presumably by sodium, and unstable, with propionic acid being the main compound of the volatile fatty acids (VFA). When diluting the sludge 1:1 with tap water (Na: 5.3 g/l), the inhibition could be overcome and a stable process with low VFA concentrations was achieved. The results of the study are used to make recommendations for the configuration of full-scale treatment plants for the collected sludge from one salmon farming licence and to estimate the energy production from these plants.  相似文献   

13.
Effects and model of alkaline waste activated sludge treatment   总被引:5,自引:1,他引:4  
Li H  Jin Y  Mahar R  Wang Z  Nie Y 《Bioresource technology》2008,99(11):5140-5144
Due to lack of information about alkaline sludge treatment with high dose at ambient temperature, alkaline sludge treatment was investigated to know the effects of different doses (0-0.5 mol/L) of sodium hydroxide (NaOH) and calcium hydroxide [Ca(OH)2] at 0-40 degrees C. Results showed that NaOH was more suitable than Ca(OH)2 for sludge disintegration. For NaOH treatment, most efficient dose was about 0.05 mol/L (0.16 g/g dry solid), and 60-71% solubilization of organic matters was achieved in first 30 min during its treatment of 24h. The process is described by a transmutative power function model, and relation between reaction rate constant and temperature are according with Arrhenius equation. Low dose NaOH treatment (<0.2 mol/L) deteriorated sludge dewatering ability obviously, while the ability was recovered gradually with the increase of NaOH dose. For Ca(OH)2 treatment, the disintegrated floc fragments and soluble organic polymers can be re-flocculated with the help of calcium cations. Consequently sludge disintegration effect was counteracted and dewatering ability improved.  相似文献   

14.
Li X  Ju LK 《Biotechnology progress》1999,15(6):1125-1132
An online fluorometer designed for following intracellular NAD(P)H was used to monitor aerobic sludge digestion experiments. The fluorescence showed an initial rise to a high plateau, a sharp decline after staying at the plateau for 20-60 h, and a trailing very slow decrease. The characteristic fluorescence profile was shown to result mainly from the solids-associated fluorescence, after ruling out other factors such as pH, temperature, and supernatant fluorescence. The fluorescence profile was, however, not a mere result of the decreasing solids concentration. The varying sludge viability and population composition (e.g., the decay of heterotrophs and the increasing fraction of nitrifiers) played important roles. The fluorescence profile correlated well with the profile of the viable heterotrophic cell number concentration evaluated with TSB-agar plates. The initial increase of the number concentration was attributed to the growth of multiple small bacteria from the lysate of each large microorganism, which was demonstrated in the experiments with baker's yeast as the starting culture for digestion. The fluorescence profiles observed in the yeast experiments were similar to those in the sludge experiments. Responding to glucose additions and the switch from aerobic to anaerobic conditions, the yeast systems showed typical step increases of fluorescence as expected from the change of NAD(P)H level associated with heterotrophic metabolism. However, no such fluorescence responses were detectable in the sludge digestion systems. NAD(P)H were thus uncertain to be responsible for the online fluorescence observed. Nonetheless, the initial fluorescence plateau corresponded to the period of rapid digestion and, for the plant studied, the EPA regulation criteria of VSS reduction >38% and/or SOUR <1.5 mg of O(2) (g of TS)(-)(1) h(-)(1) were satisfied at the end of the plateau. The online fluorescence provides an effective means of monitoring the aerobic sludge digestion process.  相似文献   

15.
The objectives of this study were the determination of chromium effects to the performance of an activated sludge unit and the investigation of the response of the activated sludge protozoan community to Cr(VI). Two bench scale activated sludge reactors were supplied with synthetic sewage containing Cr(VI), at concentrations from 1 up to 50 mg L(-1). Protozoan species were identified and were related to the system efficiency. Variations in the abundance and diversity of the protozoan species were observed under various chromium concentrations. High removal rates of organics and nutrients were observed after the acclimatization of the activated sludge, which were related to the initial chromium(VI) concentration. Chromium(VI) removal efficiency was high in all cases. The protistan community was affected by the influent chromium content. Dominance of sessile species was observed in the reactor receiving 5 mg L(-1) influent chromium, whereas co-dominance of sessile and carnivorous species was observed in the reactors receiving higher chromium concentrations.  相似文献   

16.
A novel continuously stirred anaerobic bioreactor (CSABR) seeded with silicone-immobilized sludge was developed for high-rate fermentative H2 production using sucrose as the limiting substrate. The CSABR system was operated at a hydraulic retention time (HRT) of 0.5-6 h and an influent sucrose concentration of 10-40 g COD/L. With a high feeding sucrose concentration (i.e., 30-40 g COD/L) and a short HRT (0.5 h), the CSABR reactor produced H2 more efficiently with the highest volumetric rate (VH2) of 15 L/h/L (i.e., 14.7 mol/d/L) and an optimal yield of ca. 3.5 mol H2/mol sucrose. The maximum VH2 value obtained from this work is much higher than any other VH2 values ever documented. Formation of self-flocculated granular sludge occurred during operation at a short HRT. The granule formation is thought to play a pivotal role in the dramatic enhancement of H2 production rate, because it led to more efficient biomass retention. A high biomass concentration of up to 35.4 g VSS/L was achieved even though the reactor was operated at an extremely low HRT (i.e., 0.5 h). In addition to gaining high biomass concentrations, formation of granular sludge also triggered a transition in bacterial community structure, resulting in a nearly twofold increase in the specific H2 production rate. According to denatured-gradient-gel-electrophoresis analysis, operations at a progressively decreasing HRT resulted in a decrease in bacterial population diversity. The culture with the best H2 production performance (at HRT = 0.5 h and sucrose concentration = 30 g COD/L) was eventually dominated by a presumably excellent H2-producing bacterial species identified as Clostridium pasteurianum.  相似文献   

17.
Analysis of the productivity of a continuous algal culture system   总被引:1,自引:0,他引:1  
We describe a first-principles analysis of a system for the continuous culture of the green alga Scenedesmus obliquus under light-limiting conditions. According to this analysis, the productivity of the algal culture is given by the relation Y = E(m)I(0)AK(1 - e(-alphacl)) - GRcV, where Y = yield (g cells/h), E(m) = 0.20 (the maximum attainable photosynthetic conversion on an energy basis), A = illuminated area (m(2)), K = 0.156[(g cells/h/W), the energy equivalent of the algae], I(0) = light intensity (W/m(2)), alpha = extinction coefficient (L/cm/g),c = cell concentration (g/L), I = light path (cm), R = respiration rate (g carbon/g cells/h), V = culture volume (L), and G = ratio of g cells to g carbon (2.04). This formula is completely determined and has no free adjustable parameters. Using parameter values determined independently, the model accurately predicted the relationship of productivity to cell density in the culture system.  相似文献   

18.
Polyhydroxyalkanoate (PHA), a biodegradable plastic, can be produced from excess activated sludge by utilizing intracellular glycogen and polyphosphate as energy sources under growth-limiting conditions. Activated sludge of 2%, 6%, and 8% polyphosphate with similar glycogen content of 33% was investigated for batch PHA production by varying the pH values from 6 to 8. Acetate applied at 1000 mg COD/L was almost exhausted within 80 min of anaerobic stage. The remaining glycogen in the sludge was higher at a lower pH because of less energy used for acetate uptake. Highest PHA content of 51% was obtained from sludge with an 8% polyphosphate content at pH 8. PHA production occurred rapidly within the first 20 min, with a productivity rate of 2.19 g PHA/L-h. The results in this study indicate that PHA production by using activated sludge is a promising alternative to a typical pure culture approach.  相似文献   

19.
This article shows the development of a quantitative sludge reduction test method, which uses the sludge consuming aquatic worm Lumbriculus variegatus (Oligochaeta, Lumbriculidae). Essential for the test are sufficient oxygen supply and the presence of a non-stirred layer of sludge for burrowing of the organisms. The test eliminates the unwanted effects of the organisms' movements, so-called bioturbation, on oxygen transport and (therefore) on sludge reduction. We used fresh untreated activated sludge grown on sewage, in order to stay close to the daily practice of sludge treatment. By separating sludge and worms, sludge reduction and worm growth are quantified independently and accurately. Predation by L. variegatus approximately doubles the decay rate of activated sludge. A minimum ratio of initial worm to sludge biomass (W(0)/S(0)) of about 0.4g worm/g sludge dry mass is required. Under the test conditions 20-40% of the predated sludge is converted into worm biomass. Our test is simple, reproducible and accurate and is done with equipment generally available in any laboratory, yielding results within a few days. The test can also be used to assess the application of mixtures of different aquatic organisms, but does not provide enough information for the design of a sludge treatment reactor.  相似文献   

20.
The aim of this paper was to analyze the biomethanization process of food waste (FW) from a university campus restaurant in six reactors with three different total solid percentages (20%, 25% and 30% TS) and two different inoculum percentages (20-30% of mesophilic sludge). The experimental procedure was programmed to select the initial performance parameters (total solid and inoculum contents) in a lab-reactor with V: 1100mL and, later, to validate the optimal parameters in a lab-scale batch reactor with V: 5000mL. The best performance for food waste biodegradation and methane generation was the reactor with 20% of total solid and 30% of inoculum: give rise to an acclimation stage with acidogenic/acetogenic activity between 20 and 60 days and methane yield of 0.49L CH4/g VS. Also, lab-scale batch reactor (V: 5000mL) exhibit the classical waste decomposition pattern and the process was completed with high values of methane yield (0.22L CH4/g VS). Finally, a protocol was proposed to enhance the start-up phase for dry thermophilic anaerobic digestion of food waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号