首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hoxa4 expression in developing mouse hair follicles and skin   总被引:1,自引:0,他引:1  
We have examined the expression of the Hoxa4 gene in embryonic vibrissae and developing and cycling postnatal pelage hair follicles by digoxigenin-based in situ hybridization. Hoxa4 expression is first seen in E13.5 vibrissae throughout the follicle placode. From E15.5 to E18.5 its expression is restricted to Henle's layer of the inner root sheath. Postnatally, Hoxa4 expression is observed at all stages of developing pelage follicles, from P0 to P4. Sites of expression include both inner and outer root sheaths, matrix cells, and the interfollicular epidermis. Hoxa4 is not expressed in hair follicles after P4. Hoxb4, however, is expressed both in developing follicles at P2 and in catagen at P19, suggesting differential expression of these two paralogous genes in the hair follicle cycle.  相似文献   

3.
Transformation of amnion epithelium into skin and hair follicles   总被引:11,自引:0,他引:11  
There is increasing interest into the extent to which epithelial differentiation can be altered by mesenchymal influence, and the molecular basis for these changes. In this study, we investigated whether amnion epithelium could be transformed into skin and hair follicles by associating E12.5 to E14.5 mouse amnion from the ROSA 26 strain, with mouse embryonic hair-forming dermis from a wild-type strain. These associations were able to produce fully formed hair follicles with associated sebaceous glands, and skin epidermis. Using beta-galactosidase staining we were able to demonstrate that the follicular epithelium and skin epidermis, but not the associated dermal cells, originated from the amnion. As Noggin and Sonic hedgehog (Shh) were recently shown to be required for early chick ventral skin formation, and able to trigger skin and feather formation from chick amnion, we associated cells engineered to produce those two factors with mouse amnion. In a few cases, we obtained hair buds connected to a pluristratified epithelium; however, the transformation of the amnion was impeded by uncontrolled fibroblastic proliferation. In contrast to an earlier report, none of our control amnion specimens autonomously transformed into skin and hair follicles, indicating that specific influences are necessary to elicit follicle formation from the mouse amnion. The ability to turn amnion into skin and its appendages has practical potential for the tissue engineering of replacement skin, and related biotechnological approaches.  相似文献   

4.
The relationship between ornithine decarboxylase (L-ornithine carboxylyase, EC 4.1.1.17) activity and DNA synthetic activity was studied in mouse epidermis. Interfollicular epidermis and hair follicles were investigated separately. It was found that, in hair follicles, the variations of DNA replicative activity, which are reflected in the cyclic growth of hair, are paralleled by corresponding changes in ornithine decarboxylase activity. In both interfollicular epidermis and hair follicles, stimulation of DNA synthetic activity by plucking of hair induced a rapid and marked increase in ornithine decarboxylase activity. The relationship of steady-state and induced ornithine decarboxylase activity to DNA synthetic activity was compared in hair follicles and interfollicular epidermis. A correlation between the activity of this enzyme and DNA replication was found thereby in each of these tissues.  相似文献   

5.
6.
7.
When beta-catenin signalling is disturbed from mid-gestation onwards lineage commitment is profoundly altered in postnatal mouse epidermis. We have investigated whether adult epidermis has the capacity for beta-catenin-induced lineage conversion without prior embryonic priming. We fused N-terminally truncated, stabilised beta-catenin to the ligand-binding domain of a mutant oestrogen receptor (DeltaNbeta-cateninER). DeltaNbeta-cateninER was expressed in the epidermis of transgenic mice under the control of the keratin 14 promoter and beta-catenin activity was induced in adult epidermis by topical application of 4-hydroxytamoxifen (4OHT). Within 7 days of daily 4OHT treatment resting hair follicles were recruited into the hair growth cycle and epithelial outgrowths formed from existing hair follicles and from interfollicular epidermis. The outgrowths expressed Sonic hedgehog, Patched and markers of hair follicle differentiation, indicative of de novo follicle formation. The interfollicular epidermal differentiation program was largely unaffected but after an initial wave of sebaceous gland duplication sebocyte differentiation was inhibited. A single application of 4OHT was as effective as repeated doses in inducing new follicles and growth of existing follicles. Treatment of epidermis with 4OHT for 21 days resulted in conversion of hair follicles to benign tumours resembling trichofolliculomas. The tumours were dependent on continuous activation of beta-catenin and by 28 days after removal of the drug they had largely regressed. We conclude that interfollicular epidermis and sebaceous glands retain the ability to be reprogrammed in adult life and that continuous beta-catenin signalling is required to maintain hair follicle tumours.  相似文献   

8.
Alcian Blue staining in MgCl-2 of various concentrations revealed that the basement membrane of dog hair follicles contains a large amount of glycosaminoglycan that increases with age, varies with breed, and is significantly greater than that of dermal collagen. This material is highly sulphated and of low molecular weight. Glycoprotein is also present in significantly greater amount than in dermal collagen. Active hair matrix contains clycosaminoglycan in similar amounts to epidermis but the glycoprotein content is much greater and staining is abolished in the keratinized cortex.  相似文献   

9.
Keratins K14 and K5 have long been considered to be biochemical markers of the stratified squamous epithelia, including epidermis (Moll, R., W. Franke, D. Schiller, B. Geiger, and R. Krepler. 1982. Cell. 31:11-24; Nelson, W., and T.-T. Sun. 1983. J. Cell Biol. 97:244-251). When cells of most stratified squamous epithelia differentiate, they downregulate expression of mRNAs encoding these two keratins and induce expression of new sets of keratins specific for individual programs of epithelial differentiation. Frequently, as in the case of epidermis, the expression of differentiation-specific keratins also leads to a reorganization of the keratin filament network, including denser bundling of the keratin fibers. We report here the use of monospecific antisera and cRNA probes to examine the differential expression of keratin K14 in the complex tissue of human skin. Using in situ hybridizations and immunoelectron microscopy, we find that the patterns of K14 expression and filament organization in the hair follicle are strikingly different from epidermis. Some of the mitotically active outer root sheath (ORS) cells, which give rise to ORS under normal circumstances and to epidermis during wound healing, produce only low levels of K14. These cells have fewer keratin filaments than basal epidermal cells, and the filaments are organized into looser, more delicate bundles than is typical for epidermis. As these cells differentiate, they elevate their expression of K14 and produce denser bundles of keratin filaments more typical of epidermis. In contrast to basal cells of epidermis and ORS, matrix cells, which are relatively undifferentiated and which can give rise to inner root sheath, cuticle and hair shaft, show no evidence of K14, K14 mRNA expression, or keratin filament formation. As matrix cells differentiate, they produce hair-specific keratins and dense bundles of keratin filaments but they do not induce K14 expression. Collectively, the patterns of K14 and K14 mRNA expression and filament organization in mitotically active epithelial cells of the skin correlate with their relative degree of pluripotency, and this suggests a possible basis for the deviation of hair follicle programs of differentiation from those of other stratified squamous epithelia.  相似文献   

10.
Expression of prostaglandin E(2) receptor subtypes in mouse hair follicles.   总被引:4,自引:0,他引:4  
We investigated the mRNA distribution of the prostaglandin (PG) E(2) receptor subtypes and cyclooxygenases (COXs) in hair follicles of the mouse dorsal skin. In the 3-week hair follicles, which are in the anagen phase, EP3 and EP4 mRNA were expressed in the dermal papilla cells and the outer root sheath cells located in the hair bulb region, respectively. In the 8-week hair follicles, which are in the telogen phase, the signals for both EP3 and EP4 mRNAs had disappeared. To study the hair cycle-dependent expression of mRNAs for the EPs and COXs, an area of dorsal hair was depilated from 8-week-old mice. On days 8 and 12 after depilation, EP3 and EP4 mRNA were reexpressed in the dermal papilla cells and the outer root sheath cells, and the induction of COX-2 mRNA was also observed in the outer root sheath cells, the upper area of EP4 expression site. These results suggest that EP3 and EP4 receptors may involve in the development and regrowth of the hair follicles.  相似文献   

11.
Pregnant mice were whole-body irradiated with a single acute dose of gamma-rays (60Co) to investigate the effect of gamma-radiation on embryonic melanoblasts. The effect was studied by scoring changes in the differentiation of melanocytes in the hair follicles of mice heterozygous for the recessive coat color mutation pink-eyed dilution (p). Abnormal round melanocytes were found in the hair matrix and the dermal papilla of F1 offspring 3.5 days after birth. However, these round melanocytes possessed a melanin deposition of similar intensity to normal hair follicular melanocytes. The frequency of the abnormal hair follicles increased in a dose-dependent manner. Moreover, higher frequencies were found in the animals irradiated at earlier stages of embryonic development. These results indicate that gamma-radiation affects dendritogenesis and the location of mouse melanocytes in the hair follicles, with greater effects seen at the earlier stages of development.  相似文献   

12.
Proliferation characteristics of basal cells in the pilary canal of resting hair follicles were investigated and compared with corresponding parameters in interfollicular epidermis of hairless mice. The mitotic rates had similar 24-h means at both locations. Distinct circadian rhythms which showed phasing and amplitudes similar to that in interfollicular epidermis, were demonstrated by the 3H-TdR labelling index, the mitotic rate and the mitotic index. Influx of cells to and efflux of cells from the S phase were measured in the early morning and in the evening by a 3H-TdR double labelling method. The influx values were similar at both times of both locations. The efflux values recorded in the morning were more than twice the values seen in the evening in both the pilary canal and in interfollicular epidermis. The epidermal motitic rate in the pilary canal was depressed by epidermal extracts, and increased after adhesive tape stripping in the same way as in interfollicular epidermis. The results indicate no heterogeneity in cell proliferation characteristics between the two locations, and suggest that similar mechanisms are responsible for maintainance of growth equilibrium at both sites.  相似文献   

13.
14.
15.
16.
17.
Hair differentiation and growth are controlled by complex reciprocal signaling between epithelial and mesenchymal cells. To better understand the requirement and molecular mechanism of BMP signaling in hair follicle development, we performed genetic analyses of bone morphogenetic protein receptor 1A (BMPR-IA) function during hair follicle development by using a conditional knockout approach. The conditional mutation of Bmpr1a in ventral limb ectoderm and its derivatives (epidermis and hair follicles) resulted in a lack of hair outgrowth from the affected skin regions. Mutant hair follicles exhibited abnormal morphology and lacked hair formation and pigment deposition during anagen. The timing of the hair cycle and the proliferation of hair matrix cells were also affected in the mutant follicles. We demonstrate that signaling via epithelial BMPR-IA is required for differentiation of both hair shaft and inner root sheath from hair matrix precursor cells in anagen hair follicles but is dispensable for embryonic hair follicle induction. Surprisingly, aberrant de novo hair follicle morphogenesis together with hair matrix cell hyperplasia was observed in the absence of BMPR-IA signaling within the affected skin of adult mutants. They developed hair follicle tumors from 3 months of age, indicating that inactivation of epidermal BMPR-IA signaling can lead to hair tumor formation. Taken together, our data provide genetic evidence that BMPR-IA signaling plays critical and multiple roles in controlling cell fate decisions or maintenance, proliferation, and differentiation during hair morphogenesis and growth, and implicate Bmpr1a as a tumor suppressor in skin tumorigenesis.  相似文献   

18.
Mice lacking the ubiquitously expressed lysosomal cysteine protease cathepsin L, show a complex skin phenotype consisting of periodic hair loss and epidermal hyperplasia with hyperproliferation of basal epidermal keratinocytes, acanthosis and hyperkeratosis. The recently identified human cathepsin L-like enzyme cathepsin V, which is also termed cathepsin L2, is specifically expressed in cornea, testis, thymus, and epidermis. To date, in mice no cathepsin V orthologue with this typical expression pattern has been identified. Since cathepsin V has about 75% protein sequence identity to murine cathepsin L, we hypothesized that transgenic, keratinocyte-specific expression of cathepsin V in cathepsin L knockout mice might rescue the skin and hair phenotype. Thus, we generated a transgenic mouse line expressing cathepsin V under the control of the human keratin 14 promoter, which mimics the genuine cathepsin V expression pattern in human skin, by directing it to basal epidermal keratinocytes and the outer root sheath of hair follicles. Subsequently, transgenic mice were crossed with congenic cathepsin L knockout animals. The resulting mice show normalization of epidermal proliferation and normal epidermal thickness as well as rescue of the hair phenotype. These findings provide evidence for keratinocyte-specific pivotal functions of cathepsin L-like proteolytic activities in maintenance of epidermis and hair follicles and suggest, that cathepsin V may perform similar functions in human skin.  相似文献   

19.
20.
E-cadherin is thought to mediate intercellular adhesion in the mammalian epidermis and in hair follicles as the adhesive component of adherens junctions. We have tested this role of E-cadherin directly by conditional gene ablation in the mouse. We show that postnatal loss of E-cadherin in keratinocytes leads to a loss of adherens junctions and altered epidermal differentiation without accompanying signs of inflammation. Overall tissue integrity and desmosomal structures were maintained, but skin hair follicles were progressively lost. Tumors were not observed and beta-catenin levels were not strongly altered in the mutant skin. We conclude that E-cadherin is required for maintaining the adhesive properties of adherens junctions in keratinocytes and proper skin differentiation. Furthermore, continuous hair follicle cycling is dependent on E-cadherin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号