首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Construction of delta aroA his delta pur strains of Salmonella typhi.   总被引:19,自引:5,他引:14       下载免费PDF全文
Salmonella typhi strains with two deletion mutations, each causing an attenuating auxotrophy, have been constructed from strains Ty2 and CDC 10-80 for possible use as oral-route live vaccines. An aroA(serC)::Tn10 transposon insertion was first transduced from a Salmonella typhimurium donor into each wild-type S. typhi strain. Transductants of the Aro- SerC- phenotype were treated with transducing phage grown on an S. typhimurium strain with an extensive deletion at aroA; selection for SerC+ yielded transductants, some of which were delta aroA. A his mutation was next inserted into a delta aroA strain in each line by two steps of transduction. Two deletions affecting de novo purine biosynthesis were used as second attenuating mutations: delta purHD343, causing a requirement for hypoxanthine (or any other purine) and thiamine, and delta purA155, causing an adenine requirement. The purHD343 deletion was introduced into the delta aroA his derivatives of each strain by cotransduction with purH::Tn10, and the purA155 deletion was introduced into the CDC 10-80 delta aroA his derivative by cotransduction with an adjacent silent Tn10 insertion by selection for tetracycline resistance. Tetracycline-sensitive mutants of each of the three delta aroA his delta pur strains were isolated by selection for resistance to fusaric acid. The tetracycline-sensitive derivative of the CDC 10-80 delta aroA his delta purA155 strain, designated 541Ty, and its Vi-negative mutant, 543Ty, constitute the candidate oral-route live-vaccine strains used in a recent volunteer trail (M. M. Levine, D. Herrington, J. R. Murphy, J. G. Morris, G. Losonsky, B. Tall, A. A. Lindberg, S. Stevenson, S. Baqar, M. F. Edwards, and B. A. D. Stocker, J. Clin. Invest. 79:885-902, 1987). Tetracycline-sensitive mutants of the delta aroA his delta purHD derivative of strains Ty2 and CDC 10-80 may also be appropriate as live vaccines but have not been tested as such.  相似文献   

2.
Twenty-one Mut mutants were obtained from Escherichia coli B (B/UV) and K-12 (JC355) after treatment with mutagens. These Mut strains are characterized by rates of mutation to streptomycin resistance and T-phase resistance which are significantly higher than the parental (Mut(+)) rates. Mutator genes in 12 strains have been mapped at three locations on the E. coli chromosome: one close to the leu locus; five close to the purA locus; and six close to cysC. In addition, eight mutator strains derived from E. coli B/UV are still unmapped. Some effort was made to deduce the mode of action of the mutator genes. These isolates have been examined for possible defects in deoxyribonucleic acid repair mechanisms (dark repair of ultraviolet damage, host-cell reactivation, recombination ability, repair of mitomycin C damage). By using transductional analysis, it was found that the ultraviolet sensitivity of NTG119 and its mutator property results from two separate but closely linked mutations. PurA(+) transductants that receive mut from NTG119 or NTG35 are all more sensitive to mitomycin C than is the PurA recipient. Unless transduction selects for sensitivity, a probable interpretation is that defective repair of mitomycin C-induced damage is related to the mode of action of mut in these transductants and the donor. Abnormal purine synthesis may be involved in the mutability of some strains with cotransduction of the mutator properly and purA (100% cotransduction for NTG119). Three mutators are recombination-deficient and may have a defective step in recombination repair. One maps near three rec genes close to cysC.  相似文献   

3.
In Salmonella typhimurium, the synthesis of the pyrimidine moiety of thiamine can occur by utilization of the first five steps in de novo purine biosynthesis or independently of the pur genes through the alternative pyrimidine biosynthetic, or APB, pathway (D. M. Downs, J. Bacteriol. 174:1515-1521, 1992). We have isolated the first mutations defective in the APB pathway. These mutations define the apbA locus and map at 10.5 min on the S. typhimurium chromosome. We have cloned and sequenced the apbA gene and found it to encode a 32-kDa polypeptide whose sequence predicts an NAD/flavin adenine dinucleotide-binding pocket in the protein. The phenotypes of apbA mutants suggest that, under some conditions, the APB pathway is the sole source of the pyrimidine moiety of thiamine in wild-type S. typhimurium, and furthermore, the pur genetic background of the strain influences whether this pathway can function under aerobic and/or anaerobic growth conditions.  相似文献   

4.
Hemin-Deficient Mutants of Salmonella typhimurium   总被引:13,自引:9,他引:4       下载免费PDF全文
Nine hemin-deficient mutants of Salmonella typhimurium LT2 were isolated as neomycin-resistant colonies. Five of these mutants could be stimulated by Delta-aminolevulinic acid (Delta-ALA), thus representing hemA mutants. Since S. typhimurium LT2 is not able to incorporate hemin, the identification of the mutants not stimulated by Delta-ALA was made on the basis of the simultaneous loss of catalase activity and cytochromes. The hemA gene was mapped by conjugation in the trp region, probably in the order purB-pyrD-hemA-trp; the episome FT(71)trp does not carry the hemA gene. Transductional intercrosses by phage P22 indicate that hemA 11, 12, 13, and 37 are at very closely linked sites, whereas hemA14 is at a more distant site in the same or an adjacent gene. No joint transduction was detected between hemA and trp or pyrF. The loci affected in the other hemin-deficient mutants were linked in conjugation to the pro(+) marker (frequency of linkage, 88 to 97%), but cotransduction of the two markers could not be obtained. The episome F lac hem purE, which originates from Escherichia coli K-12, could complement these hemin-deficient mutants of S. typhimurium LT2. As a result, the sequence of the markers on the chromosome of S. typhimurium LT2 is probably pro heme purE, analogous to the sequence found in E. coli K-12. Thus, the chromosome of S. typhimurium also possesses two hem regions, with a location similar to that described in E. coli K-12.  相似文献   

5.
The uptake of peptides by Salmonella typhimurium is mediated by three apparently independent transport systems. One of these systems, the oligopeptide permease, is encoded by a genetic locus (opp) which has been mapped at 34 min on the S. typhimurium chromosomal map. We accurately mapped the location of opp by cotransduction frequencies and by deletion analysis and show that the gene order for this region of the chromosome is cysB-trp-tonB-opp-galU-tdk. All opp mutants, independently isolated by a variety of means, mapped at this one locus, between tonB and galU. Spontaneous and transposon Tn10-generated deletions were used to construct a fine-structure genetic map of opp. Evidence is presented which indicates that opp covers a 5- to 6-kb segment of DNA and is therefore likely to consist of more than one gene.  相似文献   

6.
1. The pattern of distribution on the purine pathway of mutants of Salmonella typhimurium LT2 that had the double growth requirement for a purine plus the pyrimidine moiety of thiamine (ath mutants) indicated that purines and the pyrimidine moiety of thiamine share the early part of their biosynthetic pathways, and that 4-aminoimidazole ribonucleotide (AIR) is the last common intermediate. Two mutants that at first appeared anomalous were further investigated and found not to affect this deduction. 2. The ribonucleoside form of AIR (AIR(s)) satisfied the requirements both for a purine and for the pyrimidine moiety of thiamine of an ath mutant. 3. Methionine was required for the conversion of AIR into the pyrimidine moiety. 4. Radioactive AIR(s) was converted into radioactive pyrimidine moiety by an ath mutant without significant dilution of specific radioactivity. 5. Possible mechanisms for pyrimidine-moiety biosynthesis from AIR are discussed.  相似文献   

7.
Salmonella typhimurium LT2 lines, if phenotypically rough, are fully sensitive to bacteriocin 4-59, produced by Salmonella canastel strain SL1712. Bacteriocin-resistant mutants fell into three classes. Those resistant to phage ES18 and to albomycin proved to be mutants of class chr (equivalent to tonB of Escherichia coli); these mutants still adsorb the bacteriocin and so are classified as tolerant. Another class of (incompletely) tolerant mutants was resistant to phage PH51; their envelope fractions lacked the band corresponding to outer membrane protein 34K, known to serve for adsorption of phage PH51. A third class of mutants, which did not adsorb the bacteriocin, was unaltered in sensitivity to phages. Their envelopes lacked the 33K band, indicating absence of the outer membrane protein 33K, considered to correspond to outer membrane protein II* of E. coli, which in that species is determined at locus ompA (formerly tolG or con). Phage P22 HT105/1 cotransduced the 33K S. typhimurium gene (to be called ompA, to accord with E. coli usage) with pyrD+ at about 30% frequency when the donor allele was ompA+ or one ompA, but at only 3 to 11% when the donor allele was another ompA. When the donor carried either of two long deletions of the put (proline utilization) operon, phage P22 HT105/1 cotransduced put (and ompA+) with pyrD+ at low frequency. The cotransduction data indicate that ompA of S. typhimurium is located between pyrD and put, nearer the former. This corresponds to the map position of ompA in E. coli K-12.  相似文献   

8.
Mutants of Salmonella typhimurium affected in the regulation of pyrimidine biosynthesis were isolated by two methods. The first involved screening for bacteria able to feed a pyrimidine-requiring indicator strain, and the second involved selection for bacteria simultaneously resistant to two pyrimidine analogues, 5-fluorouracil and 5-fluorouridine, in a S. typhimurium strain unable to degrade 5-fluorouridine. Among the mutants isolated by these methods are constitutive mutants, producing high levels of pyrimidine biosynthetic enzymes in the presence or absence of pyrimidines, and feedback modified mutants, in which aspartate transcarbamylase is partially desensitized to its inhibitor, cytidine triphosphate. No fully desensitized mutant has been found. The partially desensitized character cotransduces with the pyrB locus, that of aspartate transcarbamylase. The constitutive character has been determined in a few cases to be localized in the region of leu and pro on the Salmonella map.  相似文献   

9.
In Salmonella typhimurium, the genetic loci and biochemical reactions necessary for the conversion of aminoimidazole ribotide (AIR) to the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine remain unknown. Preliminary genetic analysis indicates that there may be more than one pathway responsible for the synthesis of HMP from AIR and that the function of these pathways depends on the availability of AIR, synthesized by the purine pathway or by the purF-independent alternative pyrimidine biosynthetic (APB) pathway (L. Petersen and D. Downs, J. Bacteriol. 178:5676-5682, 1996). An insertion in rseB, the third gene in the rpoE rseABC gene cluster at 57 min, prevented HMP synthesis in a purF mutant. Complementation analysis demonstrated that the HMP requirement of the purF rseB strain was due to polarity of the insertion in rseB on the downstream rseC gene. The role of RseC in thiamine synthesis was independent of rpoE.  相似文献   

10.
An arginine regulatory mutant (i.e., mutated in the argR gene) has been isolated from a strain of Salmonella typhimurium LT2. The argR mutant was found to excrete arginine into the growth medium with glycerol but not glucose as carbon source. Constitutive synthesis of arginine biosynthetic enzymes was observed. Whereas previous results (A. T. Abd-E1-A1 and J. L. Ingraham, Abstr. Annu. Meet. Am. Soc. Microbiol. 1975, K169, p. 175) have shown constitutive synthesis of carbamyl phosphate synthetase in the argR mutant, the regulation of the synthesis of the last five enzymes of the pyrimidine pathway was unaffected. However, in pyrH mutants, known to exhibit derepressed synthesis of the pyrimidine enzymes, a 10-fold derepression of ornithine transcarbamylase was observed.  相似文献   

11.
Mutations in Salmonella typhimurium strains lacking nonspecific acid phosphatase mapped in two unlinked loci. One of these, phoP, was cotransducible by phage P22 with purB, whereas the second, phoN, was cotransducible by phage P1 with purA. Mutants with temperature-sensitive nonspecific acid phosphatase activity (measured in whole cells) were also isolated. A phoN mutant with thermolabile whole-cell activity was isolated directly from wild-type LT-2. Several other mutants with temperature-sensitive enzyme activity were also isolated as revertants of phoN mutants. These data suggest that phoN might be a structural locus for nonspecific acid phosphatase. The observation that a mutation resulting in high level of nonspecific acid phosphatase mapped in phoP suggests a possible regulatory role for this locus.  相似文献   

12.
rfaP mutants of Salmonella typhimurium   总被引:13,自引:0,他引:13  
Salmonella typhimurium rfaP mutants were isolated and characterised with respect to their sensitivity towards hydrophobic antibiotics and detergents, and their lipopolysaccharides were chemically analysed. The rfaP mutants were selected after diethylsulfate mutagenesis or as spontaneous mutants. The mutation in two independent mutants SH7770 (line LT2) and SH8551 (line TML) was mapped by cotransduction with cysE to the rfa locus. The mutants were sensitive to hydrophobic antibiotics (clindamycin, erythromycin and novobiocin) and detergents (benzalkoniumchloride and sodium dodecyl sulfate). Analysis of their lipopolysaccharides by chemical methods and by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that their saccharide portion was, to a large extent, of chemotype Rc with small proportions of material containing a more complete core oligosaccharide and O-specific chains. Only 2.5 mol phosphate/mol lipopolysaccharide was found whereas the phosphate content of the lipopolysaccharide of a galE mutant strain was 4.8 mol. Thus the rfaP mutant lipopolysaccharides lacked more than two phosphate residues. Assessment of the location of phosphate groups in rfaP lipopolysaccharides revealed the presence of at least 2 mol phosphate in lipid A, indicating that the core oligosaccharide was almost devoid of phosphate. The chemical, physiological and genetic data obtained for these mutants are in full agreement with those reported earlier for rfaP mutants of Salmonella minnesota.  相似文献   

13.
Analysis of hybrids formed in a cross between a Salmonella paratyphi C Hfr and an S. typhimurium recipient indicated that the structural genetic determinants of the S. paratyphi C Vi antigen are located closely adjacent to the mel determinant, between this marker and purA. A similar location was indicated for the structural genetic determinants of the S. typhi Vi antigen (the viaB locus) by the results of a mating in which a hybrid S. typhimurium Hfr bearing the S. typhi viaB determinants was used to transfer these genes to an S. typhimurium recipient. Mating experiments with a Vi-antigen-expressing S. typhi Hfr and an S. typhimurium hybrid recipient expressing the Vi antigen of S. paratyphi C yielded no recombinants in which loss of Vi antigen expression occurred, indicating that the chromosomal locus occupied by the genetic determinants of the S. paratyphi C Vi antigen is the same one at which, in S. typhi, the viaB genes reside. Introduction of a mutant S. typhi viaA gene into an S. typhimurium hybrid expressing the Vi antigen, as the consequence of prior receipt of the S. paratyphi C viaB determinants, resulted in that hybrid's loss of Vi antigen expression, demonstrating that the viaA determinant plays a role in Vi antigen expression in S. paratyphi C, as well as in S. typhi. Although the percentages of coinheritance of the viaB and mel determinants in the mating experiments suggested that their linkage is sufficiently close to allow cotransduction by P22, attempts to accomplish this with lysates prepared on S. typhimurium hybrids expressing either S. typhi or S. paratyphi C viaB determinants were not successful.  相似文献   

14.
Of the three bacterial peptide transport systems only one, the oligopeptide permease, has been characterized in any detail. We have now isolated Salmonella typhimurium mutants deficient in a second transport system, the tripeptide permease (Tpp), using the toxic peptide alafosfalin. Alafosfalin resistance mutations map at three loci, the gene encoding peptidase A (pepA) and two transport-defective loci, tppA and tppB. Locus tppA has been mapped to 74 min on the S. typhimurium chromosome, cotransducible with aroB, and is a positive regulator of tppB. Locus tppB maps at 27 min in the cotransduction gap between purB and pyrF. We cloned tppB, the structural locus for the tripeptide permease. Two simple methods are described for mapping the location of cloned DNA fragments on the chromosome of S. typhimurium.  相似文献   

15.
UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA+ gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate (K. Overbye and P. Margolin, J. Bacteriol. 146:170-178, 1981; K. Overbye, S. M. Basu, and P. Margolin, Cold Spring Harbor Symp. Quant. Biol. 47:785-791, 1983). Mitomycin C induction of the phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead us to deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability.  相似文献   

16.
Salmonella typhimurium mutants lacking NAD pyrophosphatase.   总被引:3,自引:2,他引:1       下载免费PDF全文
NAD can serve as both a purine and a pyridine source for Salmonella typhimurium. Exogenous NAD is rapidly broken down into nicotinamide mononucleotide and AMP by an NAD pyrophosphatase, the first step in the pathway for the assimilation of exogenous NAD. We isolated and characterized mutants of S. typhimurium lacking NAD pyrophosphatase activity; such mutants were identified by their failure to use exogenous NAD as a purine source. These mutants carry mutations that map at a new locus, designated pnuE, between 86 and 87 min on the Salmonella chromosome.  相似文献   

17.
The limitation of glycolysis in adenine-deficient Escherichia coli   总被引:1,自引:1,他引:0  
1. In many instances, there was no change in the rate of oxygen consumption per cell when adenine was withdrawn from purine auxotrophs of Escherichia coli and Salmonella typhimurium. 2. However, adenine deficiency inhibited the metabolism of glucose, mannitol or glycerol in a purA(-) strain, in purB(-) or purH(-) strains in the absence of histidine and in purB(-) mutants supplied with hypoxanthine. These are all instances where reactions occur to consume adenine nucleotides. 3. The inhibition of glucose oxidation is accompanied by the accumulation of fructose 1,6-diphosphate and dihydroxyacetone phosphate. 4. Insufficiency of ADP for phosphoglycerate kinase is the most probable cause of the inhibition.  相似文献   

18.
mut-25, a mutation to mutator linked to purA in Escherichia coli.   总被引:5,自引:3,他引:2       下载免费PDF全文
The mutation mut-25 that results in a mutator phenotype is closely linked to purA on the chromosome of Escherichia coli. The gene order in this region is ampA mut-25 purA. purA mut-25 double mutants retained mutator activity indicating that mut-25 is not a mutation in the purA gene. The repair mutations uvrA6, recA56, and exrA1 had no effect on mutation frequencies in mut-25 strains, and mut-25 strains were normally resistant to ultraviolet irradiation. Frequencies of host range mutations were not increased in phages T1, T2, and T7 grown on mut-25 strains. mut-25 could act trans, reverting the trpA46 mutation either on the chromosome or on an F episome. The transitions AT yields GC (adenine-thymine yields guanine-cytosine) and GC yields AT were induced by mut-25.  相似文献   

19.
Two pathways exist for cleavage of the carbon-phosphorus (C-P) bond of phosphonates, the C-P lyase and the phosphonatase pathways. It was previously demonstrated that Escherichia coli carries genes (named phn) only for the C-P lyase pathway and that Enterobacter aerogenes carries genes for both pathways (K.-S. Lee, W. W. Metcalf, and B. L. Wanner, J. Bacteriol. 174:2501-2510, 1992). In contrast, here it is shown that Salmonella typhimurium LT2 carries genes only for the phosphonatase pathway. Genes for the S. typhimurium phosphonatase pathway were cloned by complementation of E. coli delta phn mutants. Genes for these pathways were proven not to be homologous and to lie in different chromosomal regions. The S. typhimurium phn locus lies near 10 min; the E. coli phn locus lies near 93 min. The S. typhimurium phn gene cluster is about 7.2 kb in length and, on the basis of gene fusion analysis, appears to consist of two (or more) genes or operons that are divergently transcribed. Like that of the E. coli phn locus, the expression of the S. typhimurium phn locus is activated under conditions of Pi limitation and is subject to Pho regulon control. This was shown both by complementation of the appropriate E. coli mutants and by the construction of S. typhimurium mutants with lesions in the phoB and pst loci, which are required for activation and inhibition of Pho regulon gene expression, respectively. Complementation studies indicate that the S. typhimurium phn locus probably includes genes both for phosphonate transport and for catalysis of C-P bond cleavage.  相似文献   

20.
Nearly all of 62 strains of Salmonella paratyphi B were sensitive to colicin M and phage T5 but resistant to phages T1 and ES18 and to colicin B. All tested S. typhimurium strains were resistant to colicin M and phage T5, and many were sensitive to phage ES18. A rough S. typhimurium LT2 strain given the tonA region of Escherichia coli or S. paratyphi B became sensitive to colicin M and phage T5. We infer that the tonA allele of S. paratyphi B, like that of E. coli, determines an outer membrane protein that adsorbs T5 and colicin M but not phage ES18, whereas the S. typhimurium allele determines a protein able to adsorb only ES18. The partial T1 sensitivity of a rough LT2 strain with a tonA allele from E. coli or S. paratyphi B and also the tonB(+) phentotype of an E. coli B trp-tonB Delta mutant carrying an F' trp of LT2 origin showed that S. typhimurium LT2 has a tonB allele like that of E. coli with respect to determination of sensitivity to colicins and phage T1. Rough S. paratyphi B, although T5 sensitive, remained resistant to T1 even when given F' tonB(+) of E. coli origin. Classes of Salmonella mutants selected as resistant to colicin M included: T5-resistant mutants, probably tonA(-); mutants unchanged except for M resistance, perhaps tolerant; and Exb(+) mutants, producing a colicin inhibitor (presumably enterochelin). Some Exb(+) mutants were resistant to a bacteriocin inactive on E. coli but active on all tested S. paratyphi B and S. typhimurium strains (and on nearly all other tested Salmonella). A survey showed sensitivity to colicin M in several other species of Salmonella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号