首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Location of Sulfate-binding Protein in Salmonella typhimurium   总被引:17,自引:6,他引:11  
A method is described for location of proteins in bacteria. It depends upon two techniques. One technique is the inactivation of the protein by a reagent which is incapable of penetrating the bacterial membrane (permeability barrier). Proteins inside this membrane cannot be inactivated unless the cells are disrupted; proteins on or outside the membrane can be inactivated. The second technique depends upon inactivation of the protein by specific antibody. Antibody should not penetrate the external bacterial wall, and therefore should only inactivate proteins that are on the wall surface. Thus, proteins can be localized inside the membrane, in the wall-membrane area, or outside the wall. One reagent developed for use with the first technique is diazo-7-amino-1,3-naphthalene-disulfonate. It inactivated beta-galactoside transport, but not beta-galactosidase of intact Escherichia coli. Similarly, it inactivated sulfate binding and transport but not uridine phosphorylase activity of Salmonella typhimurium. This indicates that the sulfate-binding protein is on or outside the cell membrane, and that uridine phosphorylase is inside the cell. The organic mercurial compounds used also showed that the sensitive parts of the sulfate and alpha-methylglucoside transport systems are less reactive than the sensitive part of the beta-galactoside system. Antibody to the sulfate-binding protein inactivated the purified protein but did not inactivate this protein when intact bacteria were employed. Thus, it appears that the sulfate-binding protein does not protrude outside the cell wall. The conclusion that the binding protein is located in the wall-membrane region is supported by its release upon spheroplast formation or osmotic shock, and also by its ability to combine with sulfate in bacteria which cannot transport sulfate into the cell.  相似文献   

2.
Tryptophan biosynthesis in Salmonella is controlled by at least one regulatory gene, trpR, which is cotransducible with thr genes and not with the trp operon. Mutations in trpR cause derepression of tryptophan enzyme synthesis and confer resistance to growth inhibition by 5-methyltryptophan. Nineteen trpR mutations were mapped with respect to thrA and serB markers by two-point (ratio) and three-point transduction tests. The results are all consistent with the site order serB80-trpR-thrA59 on the Salmonella chromosome. Very low or undetectable levels of recombination between different trpR mutations have so far prevented the determination of fine structure in the trpR gene. Thirteen other 5-methyltryptophan-resistant mutants previously found not to be cotransducible with either the trp operon or thrA, and designated trpT, were also used in these experiments. Lack of cotransducibility with thrA was confirmed, and no linkage with serB was detected. The nature and location of trpT mutations remain obscure.  相似文献   

3.
Gaseous nitrogen dioxide (NO2) was found to induce umuC gene expression in Salmonella typhimurium carrying the umuC-lacZ fusion plasmid. The induction level of the umu operon responsible for inducible mutagenesis was measured by the level of beta-galactosidase in the cell, encoded by the fusion gene. NO2 gas was bubbled into bacterial suspensions at 10, 30 and 90 microliters/l for 30 min at a flow rate of 100 ml/min. Expression of the umuC gene varied with the concentration, flow rate and bubbling time of the NO2 gas. Although NO2 gas induces SOS functions, mutagenesis due to it was not detectable in Salmonella typhimurium TA100 and TA102. Nitric oxide gas (NO) did not induce any umuC gene expression.  相似文献   

4.
5.
In group C1 salmonellae, rfe and rff genes linked to the ilv locus specify the synthesis of a glycolipid called the enterobacterial common antigen. In contrast, in group B salmonellae the synthesis requires in addition some of the genes in the rfb cluster, the main genetic determinant of the O side chains of lipopolysaccharide. In an effort to define the biochemical functions of these rfb genes, we looked in Salmonella typhimurium LT2 (group B) for rfb mutants in which the synthesis of both enterobacterial common antigen and the O side chains would be blocked in a manner suppressible by the wild-type rfe cluster of S. montevideo, of group C1. We found one mutant with these characteristics. This rfb mutation affected the activity of dTDPglucose pyrophosphorylase (glucose-1-phosphate thymidylyltransferase, EC 2.7.7.24). Whereas the rfe cluster of S. montevideo contained a gene producing this enzyme activity, there was no evidence for the presence of such a gene in the rfe cluster of group B strains. These results also showed that the synthesis of dTDP-glucose is necessary for the biosynthesis of enterobacterial common antigen; this conclusion fits with the recent demonstration of 4-acetamido-4,6-dideoxy-D-galactose as a component of enterobacterial common antigen (Lugowski et al., Carbohydr. Res. 118:173-181, 1983), because the biosynthesis of the donor of this sugar, dTDP-4-acetamido-4,6-dideoxy-D-galactose, requires dTDPglucose pyrophosphorylase.  相似文献   

6.
7.
8.
9.
10.
11.
Salmonella typhimurium produces H2S from thiosulfate or sulfite. The respective pathways for the two reductions must be distinct as mutants carrying motations in phs, chlA, and menB reduced sulfite, but not thiosulfate, to H2S, and glucose repressed the production of H2S from thiosulfate while it stimulated its production from sulfite. The phs and chlA mutants also lacked a methyl viologen-linked thiosulfate reductase activity present in anaerobically grown wild-type cultures. A number of hydroxylamine, transposon Tn10 insertion, and Mu d1(Apr lac) operon fusion mutants defective in phs were characterized. One of the hydroxylamine mutants was an amber mutant, as indicated by suppression of its mutation in a supD background. The temperature-sensitive phs mutants produced H2S and methyl viologen-linked thiosulfate reductase at 30 degrees C but not at 42 degrees C. The reductases in all such mutants grown at 30 degrees C were as thermostable as the wild-type enzyme and did not differ in electrophoretic relative mobility, suggesting that phs is not the structural gene for thiosulfate reductase. Expression of beta-galactosidase in phs::Mu d1(Apr lac) mutants was dependent on anaerobiosis and the presence of reduced sulfur. It was also strongly influenced by carbon source and growth stage. The results are consistent with a model in which the phs gene encodes a regulatory protein essential for the reduction of thiosulfate to hydrogen sulfide.  相似文献   

12.
Differential gene expression in culturable and non-culturable forms of Salmonella typhimurium was studied by the molecular display method. Six fragments of differentially expressed gene cDNA, depending on culturable or non-culturable state of the cultures, were isolated, cloned, and sequenced. Identification of corresponding S. typhimurium differentially expressed genes was carried out by comparing the sequences of cDNA fragments with the bacterial genome data base.  相似文献   

13.
Structural gene for NAD synthetase in Salmonella typhimurium.   总被引:4,自引:3,他引:1       下载免费PDF全文
We have identified the structural gene for NAD synthetase, which catalyzes the final metabolic step in NAD biosynthesis. This gene, designated nadE, is located between gdh and nit at 27 min on the Salmonella typhimurium chromosome. Mutants of nadE include those with a temperature-sensitive lethal phenotype; these strains accumulate large internal pools of nicotinic acid adenine dinucleotide, the substrate for NAD synthetase. Native gel electrophoresis experiments suggest that NAD synthetase is a multimeric enzyme of at least two subunits and that subunits from Escherichia coli and S. typhimurium interact to form an active heteromultimer.  相似文献   

14.
pepM is an essential gene in Salmonella typhimurium.   总被引:4,自引:1,他引:4       下载免费PDF全文
The pepM gene of Salmonella typhimurium codes for a methionine-specific aminopeptidase that removes N-terminal methionine residues from proteins. This gene was inactivated in vitro by the insertion of a DNA fragment coding for kanamycin resistance. The inactivated gene could not replace the wild-type chromosomal pepM gene unless another functional copy was present in the cell. The lethal effect of the pepM insertion was not a result of polarity on any gene downstream, nor was it affected by the presence or absence of other peptidases.  相似文献   

15.
The gene specifying a membrane-bound nucleoside diphosphate sugar hydrolase of Salmonella typhimurium was mapped near the metA locus by using intergeneric crosses between this bacterium and Escherichia coli.  相似文献   

16.
The plasmid pSK1002 (umuC'-'lacZ) could increase the number of revertants induced by methyl methanesulfonate (MMS) and 4-nitroquinoline-N-oxide (4NQO) in Salmonella typhimurium TA 1535 (his-). The values induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were not different irrespective of the presence or absence of plasmid. However, the plasmid pKM101-mediated mutagenesis-enhancing effect was much greater than that mediated by pSK1002 as induced by the 3 mutagens mentioned above. Moreover, the plasmid pSK1002 could induced umu-mediated SOS response in the presence of any of these 3 mutagens or of mitomycin C, and a dose-response relationship was evident. It shows that pSK1002 (umuC'-'lacZ) has a dual biological effect, namely a mutator effect and the effect of inducing the SOS response. Besides, this study has proved SOS mutagenesis of 2,5-dichloronitrobenzol (2,5-DCNB) because of the dual indicator nature of pSK1002. Therefore, it is probable that pSK1002 could be further developed and applied in studying the relation between the SOS response and mutagenesis and in identifying environmental SOS mutagens.  相似文献   

17.
Summary Genes encoding the enzymes cytidine deaminase (cdd), uridine monophosphate pyrophosphorylase (upp), cytidine triphosphate synthetase (pyrG), and uridine phosphorylase (udp) were located on theSalmonella typhimurium chromosome at 68, 77, 90 and 122 min, respectively. Strains carrying mutations inpyrG must also carry mutations incdd in order for cytidine to be sufficiently stable metabolically to supply the cell's requirement for CTP1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号