首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Transforming growth factor beta (TGFbeta), a multifunctional cytokine associated with vascular injury, is a potent inhibitor of cell proliferation. The current results demonstrate that the TGFbeta-induced growth arrest of vascular smooth muscle cells (VSMCs) is associated with cyclin A downregulation. TGFbeta represses the cyclin A gene through a cyclic AMP (cAMP) response element, which complexes with the cAMP response element binding protein (CREB). The CREB-cyclin A promoter interaction is hindered by TGFbeta, preceded by a TGFbeta receptor-dependent CREB phosphorylation. Induction of CREB phosphorylation with forskolin or 6bnz-cAMP mimics TGFbeta's inhibitory effect on cyclin A expression. Conversely, inhibition of CREB phosphorylation with a CREB mutant in which the phosphorylation site at serine 133 was changed to alanine (CREB-S133A) upregulated cyclin A gene expression. Furthermore, the CREB-S133A mutant abolished TGFbeta-induced CREB phosphorylation, cyclin A downregulation, and growth inhibition. Since we have previously shown that the novel PKC isoform protein kinase C delta (PKCdelta) is activated by TGFbeta in VSMCs, we tested the role of this kinase in CREB phosphorylation and cyclin A downregulation. Inhibition of PKCdelta by a dominant-negative mutant or by targeted gene deletion blocked TGFbeta-induced CREB phosphorylation and cyclin A downregulation. Taken together, our data indicate that phosphorylation of CREB stimulated by TGFbeta is a critical step leading to the inhibition of cyclin A expression and, thus, VSMC proliferation.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
SIRT1, a class III histone deacetylase, is considered a key regulator of cell survival and apoptosis through its interaction with nuclear proteins. In this study, we have examined the likelihood and role of the interaction between SIRT1 and Smad7, which mediates transforming growth factor beta (TGFbeta)-induced apoptosis in renal glomerular mesangial cells. Immunoprecipitation analysis revealed that SIRT1 directly interacts with the N terminus of Smad7. Furthermore, SIRT1 reversed acetyl-transferase (p300)-mediated acetylation of two lysine residues (Lys-64 and -70) on Smad7. In mesangial cells, the Smad7 expression level was reduced by SIRT1 overexpression and increased by SIRT1 knockdown. SIRT1-mediated deacetylation of Smad7 enhanced Smad ubiquitination regulatory factor 1 (Smurf1)-mediated ubiquitin proteasome degradation, which contributed to the low expression of Smad7 in SIRT1-overexpressing mesangial cells. Stimulation by TGFbeta or overexpression of Smad7 induced mesangial cell apoptosis, as assessed by morphological apoptotic changes (nuclear condensation) and biological apoptotic markers (cleavages of caspase3 and poly(ADP-ribose) polymerase). However, TGFbeta failed to induce apoptosis in Smad7 knockdown mesangial cells, indicating that Smad7 mainly mediates TGFbeta-induced apoptosis of mesangial cells. Finally, SIRT1 overexpression attenuated both Smad7- and TGFbeta-induced mesangial cell apoptosis, whereas SIRT1 knockdown enhanced this apoptosis. We have concluded that Smad7 is a new target molecule for SIRT1 and SIRT1 attenuates TGFbeta-induced mesangial cell apoptosis through acceleration of Smad7 degradation. Our results suggest that up-regulation of SIRT1 deacetylase activity is a potentially useful therapeutic strategy for prevention of TGFbeta-related kidney disease through its effect on cell survival.  相似文献   

13.
14.
15.
16.
Cartilage damage in osteoarthritis (OA) is considered an imbalance between catabolic and anabolic factors, favoring the catabolic side. We assessed whether adenoviral overexpression of transforming growth factor-beta (TGFbeta) enhanced cartilage repair and whether TGFbeta-induced fibrosis was blocked by local expression of the intracellular TGFbeta inhibitor Smad7. We inflicted cartilage damage by injection of interleukin-1 (IL-1) into murine knee joints. After 2 days, we injected an adenovirus encoding TGFbeta. On day 4, we measured proteoglycan (PG) synthesis and content. To examine whether we could block TGFbeta-induced fibrosis and stimulate cartilage repair simultaneously, we injected Ad-TGFbeta and Ad-Smad7. This was performed both after IL-1-induced damage and in a model of primary OA. In addition to PG in cartilage, synovial fibrosis was measured by determining the synovial width and the number of procollagen I-expressing cells. Adenoviral overexpression of TGFbeta restored the IL-1-induced reduction in PG content and increased PG synthesis. TGFbeta-induced an elevation in PG content in cartilage of the OA model. TGFbeta-induced synovial fibrosis was strongly diminished by simultaneous synovial overexpression of Smad7 in the synovial lining. Of great interest, overexpression of Smad7 did not reduce the repair-stimulating effect of TGFbeta on cartilage. Adenoviral overexpression of TGFbeta stimulated repair of IL-1- and OA-damaged cartilage. TGFbeta-induced synovial fibrosis was blocked by locally inhibiting TGFbeta signaling in the synovial lining by simultaneously transfecting it with an adenovirus overexpressing Smad7.  相似文献   

17.
GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor   总被引:5,自引:0,他引:5  
Shi W  Sun C  He B  Xiong W  Shi X  Yao D  Cao X 《The Journal of cell biology》2004,164(2):291-300
The cascade of phosphorylation is a pivotal event in transforming growth factor beta (TGFbeta) signaling. Reversible phosphorylation regulates fundamental aspects of cell activity. TGFbeta-induced Smad7 binds to type I receptor (TGFbeta type I receptor; TbetaRI) functioning as a receptor kinase antagonist. We found Smad7 interacts with growth arrest and DNA damage protein, GADD34, a regulatory subunit of the protein phosphatase 1 (PP1) holoenzyme, which subsequently recruits catalytic subunit of PP1 (PP1c) to dephosphorylate TbetaRI. Blocking Smad7 expression by RNA interference inhibits association of GADD34-PP1c complex with TbetaRI, indicating Smad7 acts as an adaptor protein in the formation of the PP1 holoenzyme that targets TbetaRI for dephosphorylation. SARA (Smad anchor for receptor activation) enhances the recruitment PP1c to the Smad7-GADD34 complex by controlling the specific subcellular localization of PP1c. Importantly, GADD34-PP1c recruited by Smad7 inhibits TGFbeta-induced cell cycle arrest and mediates TGFbeta resistance in responding to UV light irradiation. The dephosphorylation of TbetaRI mediated by Smad7 is an effective mechanism for governing negative feedback in TGFbeta signaling.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号