首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We overexpressed and purified from Escherichia coli the dihydrofolate reductase (DHFR) of the gammaherpesviruses human herpesvirus 8 (HHV-8), herpesvirus saimiri (HVS), and rhesus rhadinovirus (RRV). All three enzymes proved catalytically active. The K(m) value of HHV-8 DHFR for dihydrofolate (DHF) was 2.02+/-0.44 microM, that of HVS DHFR was 4.31+/-0.56 microM, and that of RRV DHFR is 7.09+/-0.11 microM. These values are approximately 5-15-fold higher than the K(m) value reported for the human DHFR. The K(m) value of HHV-8 DHFR for NADPH was 1.31+/-0.23 microM, that of HVS DHFR was 3.78+/-0.61 microM, and that of RRV DHFR was 7.47+/-0.59 microM. These values are similar or slightly higher than the corresponding K(m) value of the human enzyme. Methotrexate, aminopterin, trimethoprim, pyrimethamine, and N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine (PT523), all well-known folate antagonists, inhibited the DHFR activity of the three gammaherpesviruses competitively with respect to DHF but proved markedly less inhibitory to the viral than towards the human enzyme.  相似文献   

2.
ADAMTS4 (aggrecanase-1) is considered to play a key role in the degradation of aggrecan in arthritides. The inhibitory activity of tissue inhibitors of metalloproteinases (TIMPs) to ADAMTS4 was examined in an assay using aggrecan substrate. Among the four TIMPs, TIMP-3 inhibited the activity most efficiently with an IC(50) value of 7.9 nM, which was at least 44-fold lower than that of TIMP-1 (350 nM) and TIMP-2 (420 nM) and >250-fold less than that of TIMP-4 (2 microM for 35% inhibition). These results suggest that TIMP-3 is a potent inhibitor against the aggrecanase activity of ADAMTS4 in vivo.  相似文献   

3.
2,6-Dideoxy-7-O-(beta-D-glucopyranosyl) 2,6-imino-D-glycero-L-gulo- heptitol (7-O-beta-D-glucopyranosyl-alpha-homonojirimycin, 1) was isolated from the 50% methanol extract of the whole plant of Lobelia sessilifolia (Campanulaceae), which was found to potently inhibit rice alpha-glucosidase. Adenophorae radix, roots of Adenophora spp. (Campanulaceae), yielded new homonojirimycin derivatives, adenophorine (2), 1-deoxyadenophorine (3), 5-deoxyadenophorine (4), 1-C-(5-amino-5-deoxy-beta-D-galactopyranosyl)butane (beta-1-C-butyl-deoxygalactonojirimycin, 5), and the 1-O-beta-D-glucosides of 2 (6) and 4 (7), in addition to the recently discovered alpha-1-C-ethylfagomine (8) and the known 1-deoxymannojirimycin (9) and 2R,5R-bis(hydroxymethyl)-3R,4R- dihydroxypyrrolidine (DMDP, 10). Compound 4 is a potent inhibitor of coffee bean alpha-galactosidase (IC50 = 6.4 microM) and a reasonably good inhibitor of bovine liver beta-galactosidase (IC50 = 34 microM). Compound 5 is a very specific and potent inhibitor of coffee bean alpha-galactosidase (IC50 = 0.71 microM). The glucosides 1 and 7 were potent inhibitors of various alpha-glucosidases, with IC50 values ranging from 1 to 0.1 microM. Furthermore, 1 potently inhibited porcine kidney trehalase (IC50 = 0.013 microM) but failed to inhibit alpha-galactosidase, whereas 7 was a potent inhibitor of alpha-galactosidase (IC50 = 1.7 microM) without trehalase inhibitory activity.  相似文献   

4.
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]- thiourea (HI-346) (as well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 microM) > HI-445 (IC50 = 0.5 microM) > trovirdine (IC50 = 0.8 microM) > MKC-442 (IC5 = 0.8 microM) = delavirdine (IC50 = 1.5 microM) > nevirapine (IC50 = 23 microM). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLV(IIIB) with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM) > nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 microM). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1.  相似文献   

5.
We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of azole-based compounds as inhibitors of the two components of the cytochrome P-450 enzyme 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), i.e. 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results suggest that the compounds synthesised are potent inhibitors, with 7-phenyl heptyl imidazole (11) (IC(50)=320 nM against 17alpha-OHase and IC(50)=100 nM against lyase); 1-[7-(4-fluorophenyl) heptyl] imidazole (14) (IC(50)=170 nM against 17alpha-OHase and IC(50)=57 nM against lyase); 1-[5-(4-bromophenyl) pentyl] imidazole (19) (IC(50)=500 nM against 17alpha-OHase and IC(50)=58 nM against lyase) being the most potent inhibitors within the current study, in comparison to ketoconazole (KTZ) (IC(50)=3.76 microM against 17alpha-OHase and IC(50)=1.66 microM against lyase). Furthermore, consideration of the inhibitory activity against the two components shows that all of the compounds tested are less potent towards the 17alpha-OHase in comparison to the lyase component, a desirable property in the development of novel inhibitors of P450(17alpha). From the modelling of these compounds onto the novel substrate heme complex (SHC) for the overall enzyme complex, the length of the compound, along with its ability to undergo interaction with the active site corresponding to the C(3) area of the steroidal backbone, are suggested to play a key role in determining the overall inhibitory activity.  相似文献   

6.
Retinoic acid (RA), the biologically active metabolite of vitamin A, is used medicinally for the treatment of hyperproliferative diseases including dermatological conditions and cancer. The antiproliferative effects of RA have been well documented as well as the limitations owing to toxicity and the development of resistance to RA therapy. RA metabolism inhibitors (RAMBAs or CYP26 inhibitors) are attracting increasing interest as an alternative method for enhancing endogenous levels of retinoic acid in the treatment of hyperproliferative disease. Here the synthesis and inhibitory activity of novel 3-(1H-imidazol- and triazol-1-yl)-2,2-dimethyl-3-(4-(phenylamino)phenyl)propyl derivatives in a MCF-7 CYP26A1 microsomal assay are described. The most promising inhibitor methyl 2,2-dimethyl-3-(4-(phenylamino)phenyl)-3-(1H-1,2,4-triazol-1-yl)propanoate (6) exhibited an IC(50) of 13 nM (compared with standards Liarozole IC(50) 540 nM and R116010 IC(50) 10 nM) and was further evaluated for CYP selectivity using a panel of CYP with >100-fold selectivity for CYP26 compared with CYP1A2, 2C9 and 2D6 observed and 15-fold selectivity compared with CYP3A4. The results demonstrate the potential for further development of these potent inhibitors.  相似文献   

7.
In a high-throughput screening effort, a series of tetrahydroisoquinolines was identified as modest inhibitors of human Eg5. A medicinal chemistry optimization effort led to the identification of R-4-(3-hydroxyphenyl)-N,N-7,8-tetramethyl-3,4-dihydroisoquinoline-2(1H)-carboxamide (32a) as a potent inhibitor of human Eg5 (ATPase IC50 104 nM) with good anti-proliferative activity in A2780 cells (IC50 234 nM).  相似文献   

8.
A number of 2-(furan-2-yl)-4-phenoxyquinoline derivatives have been synthesized and evaluated for anti-inflammatory evaluation. 4-[(2-Furan-2-yl)quinolin-4-yloxy]benzaldehyde (8), with an IC(50) value of 5.0 microM against beta-glucuronidase release, was more potent than its tricyclic furo[2,3-b]quinoline isomer 3a (>30 microM), its 4'-COMe counterpart 7 (7.5 microM), and its oxime derivative 13a (11.4 microM) and methyloxime derivative 13b (>30 microM). For the inhibition of lysozyme release, however, oxime derivative 12a (8.9 microM) and methyloxime derivative 12b (10.4 microM) are more potent than their ketone precursor 7 and their respective tricyclic furo[2,3-b]quinoline counterparts 4a and 4b. Among them, 4-[4-[(2-furan-2-yl)-quinolin-4-yloxy]phenyl]but-3-en-2-one (10) is the most active against lysozyme release with an IC(50) value of 4.6 microM, while 8 is the most active against beta-glucuronidase release with an IC(50) value of 5.0 microM. (E)-1-[3-[(2-Furan-2-yl)quinolin-4-yloxy]phenyl] ethanone oxime (11a) is capable of inhibiting both lysozyme and beta-glucuronidase release with IC(50) values of 7.1 and 9.5 microM, respectively. For the inhibition of TNF-alpha formation, 1-[3-[(2-furan-2-yl)quinolin-4-yloxy]phenyl]ethanone (6) is the most potent with an IC(50) value of 2.3 microM which is more potent than genistein (9.1 microM). For the inhibitory activity of fMLP-induced superoxide anion generation, 11a (2.7 microM), 11b (2.8 microM), and 13b (2.2 microM) are three of the most active. None of above compounds exhibited significant cytotoxicity.  相似文献   

9.
alpha(4)beta(1) and alpha(4)beta(7) integrins are key regulators of physiologic and pathologic responses in inflammation and autoimmune disease. The effectiveness of anti-integrin antibodies to attenuate a number of inflammatory/immune conditions provides a strong rationale to target integrins for drug development. Important advances have been made in identifying potent and selective candidates, peptides and peptidomimetics, for further development. Herein, we report the discovery of a series of novel N-benzoyl-L-biphenylalanine derivatives that are potent inhibitors of alpha4 integrins. The potency of the initial lead compound (1: IC(50) alpha(4)beta(7)/alpha(4)beta(1)=5/33 microM) was optimized via sequential manipulation of substituents to generate low nM, orally bioavailable dual alpha(4)beta(1)/alpha(4)beta(7) antagonists. The SAR also led to the identification of several subnanomolar antagonists (134, 142, and 143). Compound 81 (TR-14035; IC(50) alpha(4)beta(7)/alpha(4)beta(1)=7/87 nM) has completed Phase I studies in Europe. The synthesis, SAR and biological evaluation of these compounds are described.  相似文献   

10.
Recently resolved X-ray crystal structure of HIF-1alpha prolyl hydroxylase was used to design and develop a novel series of pyrazolopyridines as potent HIF-1alpha prolyl hydroxylase inhibitors. The activity of these compounds was determined in a human EGLN-1 assay. Structure-based design aided in optimizing the potency of the initial lead (2, IC(50) of 11 microM) to a potent (11l, 190 nM) EGLN-1 inhibitor. Several of these analogs were potent VEGF inducers in a cell-based assay. These pyrazolopyridines were also effective in stabilizing HIF-1alpha.  相似文献   

11.
As a continuation of our work with 1,4,5 substituted imidazole inhibitors of p38alpha, we report a series of 1-(4-piperidinyl)-4-(4-fluorophenyl)-5-(2-phenoxy-4-pyrimidinyl) imidazoles related to 7. The compounds have IC50's for inhibition of p38alpha ranging from 6.0 to 650nM. Statistical analysis of the p38beta inhibitor potencies shows a correlation of IC50's with the electron donating strength of low molecular weight substituents.  相似文献   

12.
13.
The optimization of the distance between two key pharmacophore features within our first hit compounds 1a and 2a led to the identification of a new class of potent non-peptidic antagonists for the MCH-R1, based around 4-amino-2-cyclohexylaminoquinazolines. In particular, ATC0065 (2c), N2-[cis-4-([2-[4-Bromo-2-(trifluoromethoxy)phenyl]ethyl]amino)cyclohexyl]-N4,N4-dimethylquinazoline-2,4-diamine dihydrochloride, bound with high affinity to the MCH-R1 (IC50 value of 16 nM) and showed good metabolic stability in liver microsomes from human and rat.  相似文献   

14.
Replacement of the triazolopiperazine ring of sitagliptin (DPP-4 IC(50)=18nM) with 3-(2,2,2-trifluoroethyl)-1,4-diazepan-2-one gave dipeptidyl peptidase IV (DPP-4) inhibitor 1 which is potent (DPP-4 IC(50)=2.6nM), selective, and efficacious in an oral glucose tolerance test in mice. It was selected for extensive preclinical development as a potential back-up candidate to sitagliptin.  相似文献   

15.
We have investigated the inhibitory activity of compound MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)-i ndol-2- yl]-2,2-dimethyl propanoic acid) on 5-lipoxygenase (5-LO) product synthesis in various human phagocytes stimulated with either the ionophore A23187, opsonized zymosan (OPZ), platelet-activating factor (PAF), or formyl-methionyl-leucyl-phenylalanine (fMLP). The lipoxygenase products were analyzed by reversed-phase HPLC. MK-0591 inhibited the formation of 5-hydroxyeicosatetraenoic acid, leukotriene (LT) B4, its omega-oxidation products, and 6-trans-isomers with IC50 values of 2.8-4.8 nM in A23187-stimulated neutrophils. In these conditions, arachidonic acid at a concentration of 10 microM had no effect on MK-0591 inhibitory activity. In neutrophils stimulated with OPZ, the synthesis of LTB4, its omega-oxidation products, and 6-trans-isomers was inhibited with IC50 values of 9.5-11.0 nM. MK-0591 inhibited 5-LO product synthesis in A23187-stimulated blood monocytes, eosinophils, and alveolar macrophages with IC50 values of 0.3-0.9, 3.7-5.3, and 8.5-17.3 nM, respectively. In neutrophils primed with granulocyte--macrophage colony-stimulating factor and stimulated with PAF, lipoxygenase product synthesis was inhibited with IC50 values of 7.7-8.7 nM. At the concentration of 1 microM, MK-0591 had no inhibitory effect on 15-lipoxygenase activity in human polymorphonuclear leukocytes, nor on human platelet 12-lipoxygenase and cyclooxygenase. In conclusion, MK-0591 is a very potent and specific inhibitor of 5-LO product synthesis in various types of human phagocytes.  相似文献   

16.
The effects of the enantiomers of a number of flexible and cis-constrained GABA analogues were tested on GABA(C) receptors expressed in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. (1S,2R)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((+)-CAMP), a potent and full agonist at the rho1 (EC(50) approximately 40 microM, I(max) approximately 100%) and rho 2 (EC(50) approximately 17 microM, I(max) approximately 100%) receptor subtypes, was found to be a potent partial agonist at rho3 (EC(50) approximately 28 microM, I(max) approximately 70%). (1R,2S)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((-)-CAMP), a weak antagonist at human rho1 (IC(50) approximately 890 microM) and rho2 (IC(50) approximately 400 microM) receptor subtypes, was also found to be a moderately potent antagonist at rat rho3 (IC(50) approximately 180 microM). Similarly, (1R,4S)-4-aminocyclopent-2-ene-1-carboxylic acid ((+)-ACPECA) was a full agonist at rho1 (EC(50) approximately 135 microM, I(max) approximately 100%) and rho2 (EC(50) approximately 60 microM, I(max) approximately 100%), but only a partial agonist at rho3 (EC(50) approximately 112 microM, I(max) approximately 37%), while (1S,4R)-4-aminocyclopent-2-ene-1-carboxylic acid ((-)-ACPECA) was a weak antagonist at all three receptor subtypes (IC(50)>300 microM). 4-Amino-(S)-2-methylbutanoic acid ((S)-2MeGABA) and 4-amino-(R)-2-methylbutanoic acid ((R)-2MeGABA) followed the same trend, with (S)-2MeGABA acting as a full agonist at the rho1 (EC(50) approximately 65 microM, I(max) approximately 100%), and rho2 (EC(50) approximately 20 microM, I(max) approximately 100%) receptor subtypes, and a partial agonist at rho3 (EC(50) approximately 25 microM, I(max) approximately 90%). (R)-2MeGABA, however, was a moderately potent antagonist at all three receptor subtypes (IC(50) approximately 16 microM at rho1, 125 microM at rho2 and 35 microM at rho3). On the basis of these expanded biological activity data and the solution-phase molecular structures obtained at the MP2/6-31+G* level of ab initio theory, a rationale is proposed for the genesis of this stereoselectivity effect.  相似文献   

17.
3-{1-[(4-Fluorophenyl)sulfonyl]-1H-pyrazol-3-yl}-2-methylimidazo[1,2-a]pyridine, 2a, was discovered in our chemical library as a novel p110alpha inhibitor with an IC(50) of 0.67microM, through screening in a scintillation proximity assay. Optimization of the substituents of 2a increased the p110alpha inhibitory activity by more than 300-fold (2g: IC(50)=0.0018microM). Further structural modification of 2g afforded thiazole derivative 12, which has potent p110alpha inhibitory activity (IC(50) of 0.0028microM) and is highly selective for p110alpha over other PI3K isoforms. Compound 12 also inhibited serum-induced cell proliferation of A375 and HeLa cells in vitro with IC(50) values of 0.14microM and 0.21microM, respectively, and suppressed tumor growth by 37% in a mouse HeLa xenograft model when dosed intraperitoneally at 25mg/kg. These results suggest that selective p110alpha inhibitors may have potential as cancer therapeutic agents.  相似文献   

18.
A group of 4-(4-methanesulfonylphenyl)-3-phenyl-2(5H)furanones possessing an acetyl, 3-oxobut-1-ynyl, [hydroxyl(or alkoxy)imino]alkyl, [hydroxyl(or alkoxy)imino]alkynyl, and N-alkoxy(or N-phenoxy)carbonyl-N-hydroxy-N-ethylamino substituents at the para-position of the C-3 phenyl ring of rofecoxib were synthesized. This group of compounds was designed for evaluation as dual inhibitors of cyclooxygenases (COXs) and lipoxygenases (LOXs) that exhibit in vivo anti-inflammatory and analgesic activities. In vitro COX-1/COX-2, and 5-LOX/15-LOX, isozyme inhibition structure-activity relationships identified 3-[4-(1-hydroxyimino)ethylphenyl]-4-(4-methanesulfonylphenyl)-2(5H)furanone (17a) having an optimal combination of COX-2 (COX-2 IC50 = 1.4 microM; COX-2 SI > 71), and 5-LOX and 15 LOX (5-LOX IC50 = 0.28 microM; 15-LOX IC50 = 0.32 microM), inhibitory effects. It was also discovered that 3-[4-(3-hydroxyiminobut-1-ynyl)phenyl]-4-(4-methanesulfonylphenyl)-2(5H)furanone (18a) possesses dual COX-2 (IC50 = 2.7 microM) and 5-LOX (IC50 = 0.30 microM) inhibitor actions. Further in vivo studies employing a rat carrageenan-induced paw edema model showed that the oxime compounds (17a, 18a) were more potent anti-inflammatory agents than the 5-LOX inhibitor caffeic acid, and 15-LOX inhibitor nordihydroguaiaretic acid (NDGA), but less potent than the selective COX-2 inhibitor celecoxib. The results of this investigation showed that incorporation of a para-oxime moiety on the C-3 phenyl ring of rofecoxib provides a suitable template for the design of dual inhibitors of the COX and LOX enzymes.  相似文献   

19.
The phosphono amino acid, (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl+ ++]propio nic acid (ATPO), is a structural hybrid between the NMDA antagonist (RS)-2-amino-7-phosphonoheptanoic acid (AP7) and the AMPA and GluR5 agonist, (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA). ATPO has been resolved into (S)-ATPO and (R)-ATPO using chiral HPLC, and the absolute stereochemistry of the two enantiomers was established by an X-ray crystallographic analysis of (R)-ATPO. (S)-ATPO and (R)-ATPO were characterized pharmacologically using rat brain membrane binding and electrophysiologically using the cortical wedge preparation as well as homo- or heteromeric GluR1-4, GluR5-6, and KA2 receptors expressed in Xenopus oocytes. (R)-ATPO was essentially inactive as an agonist or antagonist in all test systems. (S)-ATPO was an inhibitor of the binding of [(3)H]AMPA (IC(50) = 16 +/- 1 microM) and of [(3)H]-6-cyano-7-nitroquinoxaline-2,3-dione ([(3)H]CNQX) (IC(50) = 1.8 +/- 0.2 microM), but was inactive in the [(3)H]kainic acid and the [(3)H]-(RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([(3)H]CPP) binding assays. (S)-ATPO did not show detectable agonist effects at any of the receptors under study, but antagonized AMPA-induced depolarization in the cortical wedge preparation (IC(50) = 15 +/- 1 microM). (S)-ATPO also blocked kainic acid agonist effects at GluR1 (K(i) = 2.0 microM), GluR1+2 (K(i) = 3.6 microM), GluR3 (K(i) = 3.6 microM), GluR4 (K(i) = 6.7 microM), and GluR5 (K(i) = 23 microM), but was inactive at GluR6 and GluR6+KA2. Thus, although ATPO is a structural analog of AP7 neither (S)-ATPO nor (R)-ATPO are recognized by NMDA receptor sites.  相似文献   

20.
We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid binding (IC(50) = 3.6 microM), and potent AMPA receptor agonist activity on cortical neurons (EC(50) = 0.25 microM), whereas (R)-ACPA was essentially inactive. Like (S)-ACPA, (S)-demethyl-ACPA displayed high AMPA receptor affinity (IC(50) = 0.039 microM), but was found to be a relatively weak AMPA receptor agonist (EC(50) = 12 microM). The stereoselectivity observed for demethyl-ACPA was high when based on AMPA receptor affinity (eudismic ratio = 250), but low when based on electrophysiological activity (eudismic ratio = 10). (R)-Demethyl-ACPA also possessed a weak NMDA receptor antagonist activity (IC(50) = 220 microM). Among the enantiomers tested, only (S)-demethyl-ACPA showed activity at metabotropic receptors, being a weak antagonist at the mGlu(2) receptor subtype (K(B) = 148 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号