首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trophoblasts, the structural cells of the placenta, are thought to play a determinant role in in utero HIV type 1 (HIV-1) transmission. We have accumulated evidence suggesting that HIV-1 infection of these cells is associated with uptake by an unusual clathrin/caveolae-independent endocytic pathway and that endocytosis is followed by trafficking through multiple organelles. Furthermore, part of this trafficking involves the transit of HIV-1 from transferrin-negative to EEA1 and transferrin-positive endosomes, suggesting a merger from nonclassical to classical endocytic pathways in these cells. In the present article, the relationship between the presence of HIV-1 within specific endosomes and infection was studied. We demonstrate that viral infection is virtually lost when endosome inhibitors are added shortly after exposure to HIV-1. Thus, contrary to what is seen in CD4+ T lymphocytes, the initial presence of HIV-1 within the endosomes is mandatory for infection to take place. Importantly, this process is independent of the viral envelope proteins gp120 and gp41. The Rab family of small GTPases coordinates the vesicular transport between the different endocytic organelles. Experiments performed with various expression vectors indicated that HIV-1 infection in polarized trophoblasts relies on Rab5 and Rab7 without the contribution of Arf6 or Rab11. Furthermore, we conclude that Rab5 drives movements from raft-rich region to early endosomes, and this transit is required for subsequently reaching late endosomes via Rab7. This complex trafficking is mandatory for HIV-1 infection to proceed in human polarized trophoblasts.  相似文献   

2.
Vertical transmission of human immunodeficiency virus type 1 (HIV-1) is the primary cause of infection by this retrovirus in infants. In this study, we report for the first time that there is a correlation between endocytic uptake of HIV-1 and virus gene expression in polarized trophoblasts. To shed light on the relationship between endocytosis and the fate of HIV-1 in polarized trophoblasts, the step-by-step movements of HIV-1 within the endocytic compartments were tracked by confocal imaging. Incoming virions were initially located in early endosomes. As time progressed, virions accumulated in late endosomes. HIV-1 was also found in apical recycling endosomes and at the basolateral pole. Experiments performed with indicator cells revealed that HIV-1 is recycled and transcytosed. These data indicate that the intracellular trafficking of HIV-1 upon entry into polarized human trophoblasts is a complex process which requires the active participation of the endocytic host cell machinery.  相似文献   

3.
Infectious bursal disease virus (IBDV) internalization is sparsely known in terms of molecular components of the pathway involved. To describe the cell biological features of IBDV endocytosis, we employed perturbants of endocytic pathways such as pharmacological inhibitors and overexpression of dominant‐negative mutants. Internalization analysis was performed quantifying infected cells by immunofluorescence and Western blot detection of the viral protein VP3 at 12 h post‐infection reinforced by the analysis of the capsid protein VP2 localization after virus uptake at 1 h post‐infection. We compared IBDV infection to the internalization of well‐established ligands with defined endocytic pathways: transferrin, cholera‐toxin subunit B and dextran. To describe virus endocytosis at the morphological level, we performed ultrastructural studies of viral internalization kinetics in control and actin dynamics‐blocked cells. Our results indicate that IBDV endocytic internalization was clathrin‐ and dynamin‐independent, and that IBDV uses macropinocytosis as the primary entry mechanism. After uptake, virus traffics to early endosomes and requires exposure to the low endocytic pH as well as a functional endocytic pathway to complete its replication cycle. Moreover, our results indicate that the GTPase Rab5 is crucial for IBDV entry supporting the participation of the early endosomal pathway in IBDV internalization and infection of susceptible cells.  相似文献   

4.
Productive entry of human immunodeficiency virus type 1 (HIV-1) into a host cell is believed to proceed via fusion of the viral envelope with the host cell's plasma membrane. Interestingly, the majority of HIV-1 particles that bind to the cell surface are taken up by the host cell via endocytosis; however, this mode of internalization generally does not result in infection. Presumably, virus particles remain trapped in the endocytic pathway and are eventually degraded. Here, we demonstrate that treatment of cells with various pharmacological agents known to elevate the pH of endosomes and lysosomes allows HIV-1 to efficiently enter and infect the host cell. Pretreatment of cells with bafilomycin A1 results in up to a 50-fold increase in the infectivity of HIV-1(SF2). Similarly, pretreatment of target cells with amantadine, concanamycin A, concanamycin B, chloroquine, and ammonium chloride resulted in increases in HIV-1 infectivity ranging between 2- and 15-fold. Analysis of receptor and coreceptor expression, HIV-long terminal repeat (LTR) transactivation, and transduction with amphotropic-pseudotyped murine leukemia virus (MLV)-based vectors suggests that the increase in infectivity is not artifactual. The increased infectivity under these conditions appears to be due to the ability of HIV-1 and MLV particles to enter via the endocytic pathway when spared from degradation in the late endosomes and lysosomes. These results could have significant implications for the administration of current and future lysosmotropic agents to patients with HIV disease.  相似文献   

5.
Bridging conduits (BC) are tubular protrusions that facilitate cytoplasm and membrane exchanges between tethered cells. We now report that the human immunodeficiency virus type I (HIV-1) exploits these conduits to accelerate its spread and to shield it from immune surveillance. Endosome transport through BC drives HIV-1 intercellular transfers. How this occurs was studied in human monocyte-derived macrophages using proteomic, biochemical, and imaging techniques. Endosome, endoplasmic reticulum (ER), Golgi markers, and HIV-1 proteins were identified by proteomic assays in isolated conduits. Both the ER and Golgi showed elongated and tubular morphologies that extended into the conduits of polarized macrophages. Env and Gag antigen and fluorescent HIV-1 tracking demonstrated that these viral constituents were sequestered into endocytic and ER-Golgi organelles. Sequestered infectious viral components targeted the Golgi and ER by retrograde transport from early and Rab9 late endosomes. Disruption of the ER-Golgi network impaired HIV-1 trafficking in the conduit endosomes. This study provides, for the first time, mechanisms for how BC Golgi and ER direct cell-cell viral transfer.  相似文献   

6.
Enveloped viruses often enter cells via endocytosis; however, specific endocytic trafficking pathway(s) for many viruses have not been determined. Here we demonstrate, through the use of dominant-negative Rab5 and Rab7, that influenza virus (Influenza A/WSN/33 (H1N1) and A/X-31 (H3N2)) requires both early and late endosomes for entry and subsequent infection in HeLa cells. Time-course experiments, monitoring viral ribonucleoprotein colocalization with endosomal markers, indicated that influenza exhibits a conventional endocytic uptake pattern – reaching early endosomes after approximately 10 min, and late endosomes after 40 min. Detection with conformation-specific hemagglutinin antibodies indicated that hemagglutinin did not reach a fusion-competent form until the virus had trafficked beyond early endosomes. We also examined two other enveloped viruses that are also pH-dependent for entry – Semliki Forest virus and vesicular stomatitis virus. In contrast to influenza virus, infection with both Semliki Forest virus and vesicular stomatitis virus was inhibited only by the expression of dominant negative Rab5 and not by dominant negative Rab7, indicating an independence of late endosome function for infection by these viruses. As a whole, these data provide a definitive characterization of influenza virus endocytic trafficking and show differential requirements for endocytic trafficking between pH-dependent enveloped viruses .  相似文献   

7.
8.
Macrophages represent viral reservoirs in HIV-1-infected patients and accumulate viral particles within an endosomal compartment where they remain infectious for long periods of time. To determine how HIV-1 survives in endocytic compartments that become highly acidic and proteolytic and to study the nature of these virus-containing compartments, we carried out an ultrastructural study on HIV-1-infected primary macrophages. The endosomal compartments contain newly formed virions rather than internalized ones. In contrast to endocytic compartments free of viral proteins within the same infected cells, the virus containing compartments do not acidify. The lack of acidification is associated with an inability to recruit the proton pump vacuolar ATPase into the viral assembly compartment. This may prevent its fusion with lysosomes, since acidification is required for the maturation of endosomes. Thus, HIV-1 has developed a strategy for survival within infected macrophages involving prevention of acidification within a devoted endocytic virus assembly compartment.  相似文献   

9.
10.
Here we analyzed the dependence of African swine fever virus (ASFV) infection on the integrity of the endosomal pathway. Using confocal immunofluorescence with antibodies against viral capsid proteins, we found colocalization of incoming viral particles with early endosomes (EE) during the first minutes of infection. Conversely, viral capsid protein was not detected in acidic late endosomal compartments, multivesicular bodies (MVBs), late endosomes (LEs) or lysosomes (LY). Using an antibody against a viral inner core protein, we found colocalization of viral cores with late compartments from 30 to 60 minutes postinfection. The absence of capsid protein staining in LEs and LYs suggested that virus desencapsidation would take place at the acid pH of these organelles. In fact, inhibitors of intraluminal acidification of endosomes caused retention of viral capsid staining virions in Rab7 expressing endosomes and more importantly, severely impaired subsequent viral protein production. Endosomal acidification in the first hour after virus entry was essential for successful infection but not thereafter. In addition, altering the balance of phosphoinositides (PIs) which are responsible of the maintenance of the endocytic pathway impaired ASFV infection. Early infection steps were dependent on the production of phosphatidylinositol 3-phosphate (PtdIns3P) which is involved in EE maturation and multivesicular body (MVB) biogenesis and on the interconversion of PtdIns3P to phosphatidylinositol 3, 5-biphosphate (PtdIns(3,5)P2). Likewise, GTPase Rab7 activity should remain intact, as well as processes related to LE compartment physiology, which are crucial during early infection. Our data demonstrate that the EE and LE compartments and the integrity of the endosomal maturation pathway orchestrated by Rab proteins and PIs play a central role during early stages of ASFV infection.  相似文献   

11.
The endocytic pathway of eukaryotes is essential for the internalization and trafficking of macromolecules, fluid, membranes, and membrane proteins. One of the most enigmatic aspects of this process is endocytic recycling, the return of macromolecules (often receptors) and fluid from endosomes to the plasma membrane. We have previously shown that the EH-domain protein RME-1 is a critical regulator of endocytic recycling in worms and mammals. Here we identify the RAB-10 protein as a key regulator of endocytic recycling upstream of RME-1 in polarized epithelial cells of the Caenorhabditis elegans intestine. rab-10 null mutant intestinal cells accumulate abnormally abundant RAB-5-positive early endosomes, some of which are enlarged by more than 10-fold. Conversely most RME-1-positive recycling endosomes are lost in rab-10 mutants. The abnormal early endosomes in rab-10 mutants accumulate basolaterally recycling transmembrane cargo molecules and basolaterally recycling fluid, consistent with a block in basolateral transport. These results indicate a role for RAB-10 in basolateral recycling upstream of RME-1. We found that a functional GFP-RAB-10 reporter protein is localized to endosomes and Golgi in wild-type intestinal cells consistent with a direct role for RAB-10 in this transport pathway.  相似文献   

12.
Cells constituting the placental barrier secrete soluble factors that may participate in controlling human immunodeficiency virus type 1 (HIV-1) transmission from the mother to the fetus. In this study, we asked whether placental soluble factors (PSF) could limit cell-cell contact inducing HIV-1 production that occurs after inoculation of HIV-1-infected peripheral blood mononuclear cells (HIV-1+ PBMCs) onto trophoblast-derived BeWo cells grown as tight and polarized barriers in a two-chamber system. The activity of recombinant chemokines and cytokines expressed by placental tissue and of factors secreted by either early or term placentae of HIV-1-negative women, was analyzed. We identified chemokines (RANTES and MIP-1beta) and cytokines (tumor necrosis factor alpha and interleukin-8) that decreased and increased, respectively, viral production in trophoblast barrier cells inoculated with HIV-1+ PBMCs. Unexpectedly, factors secreted by either early or term placentae of HIV-1-negative women enhanced viral production. Nevertheless, the same PSF did not favor infection of trophoblastic barriers with cell-free HIV-1 and strongly reduced viral production in PBMCs infected with cell-free HIV-1. Moreover, PSF contained chemokines (RANTES and MIP-1beta) and a cytokine, leukemia inhibitory factor, exhibiting a strong anti-HIV-1 activity in our model of cell-to-cell infection. Together these data suggested that at the maternal interface the global activity of PSF is related to the synergistic action of several soluble factors with a balance in favor of an enhancing activity on the passage of viruses across the trophoblast barrier. This could explain the presence of viral sequences in trophoblasts in all placentae of HIV-1-infected women.  相似文献   

13.
The human immunodeficiency virus (HIV) type-1 viral protein U (Vpu) protein enhances the release of diverse retroviruses from human, but not monkey, cells and is thought to do so by ablating a dominant restriction to particle release. Here, we determined how Vpu expression affects the subcellular distribution of HIV-1 and murine leukemia virus (MLV) Gag proteins in human cells where Vpu is, or is not, required for efficient particle release. In HeLa cells, where Vpu enhances HIV-1 and MLV release approximately 10-fold, concentrations of HIV-1 Gag and MLV Gag fused to cyan fluorescent protein (CFP) were initially detected at the plasma membrane, but then accumulated over time in early and late endosomes. Endosomal accumulation of Gag-CFP was prevented by Vpu expression and, importantly, inhibition of plasma membrane to early endosome transport by dominant negative mutants of Rab5a, dynamin, and EPS-15. Additionally, accumulation of both HIV and MLV Gag in endosomes required a functional late-budding domain. In human HOS cells, where HIV-1 and MLV release was efficient even in the absence of Vpu, Gag proteins were localized predominantly at the plasma membrane, irrespective of Vpu expression or manipulation of endocytic transport. While these data indicated that Vpu inhibits nascent virion endocytosis, Vpu did not affect transferrin endocytosis. Moreover, inhibition of endocytosis did not restore Vpu-defective HIV-1 release in HeLa cells, but instead resulted in accumulation of mature virions that could be released from the cell surface by protease treatment. Thus, these findings suggest that a specific activity that is present in HeLa cells, but not in HOS cells, and is counteracted by Vpu, traps assembled retrovirus particles at the cell surface. This entrapment leads to subsequent endocytosis by a Rab5a- and clathrin-dependent mechanism and intracellular sequestration of virions in endosomes.  相似文献   

14.
15.
Purging HIV-1 to cure the infection in patients undergoing suppressive antiretroviral therapy requires targeting all possible viral reservoirs. Other than the memory CD4+ T cells, several other HIV-1 reservoirs have been identified. HIV-1 infection in the brain as a reservoir is well documented, but not fully characterized. There, microglia, perivascular macrophages, and astrocytes can be infected by HIV-1. HIV-1 infection in astrocytes has been described as a nonproductive and primarily a latent infection. Using primary human astrocytes, we investigated latent HIV-1 infection and tested phorbol 12-myristate 13-acetate (PMA), a protein kinase C agonist, as an HIV-1-latency- reversing agent in infected astrocytes. Chloroquine (CQ) was used to facilitate initial HIV-1 escape from endosomes in astrocytes. CQ significantly increased HIV-1 infection. But treatment with PMA or viral Tat protein was similar to untreated HIV-1-infected astrocytes. Long-term follow-up of VSV-envelope-pseudotyped HIV-1 infected astrocytes showed persistent infection for 110 days, indicating the active state of the virus.  相似文献   

16.
The entry of DENV into the host cell appears to be a very complex process which has been started to be studied in detail. In this report, the route of functional intracellular trafficking after endocytic uptake of dengue virus serotype 1 (DENV-1) strain HW, DENV-2 strain NGC and DENV-2 strain 16681 into Vero cells was studied by using a susceptibility to ammonium chloride assay, dominant negative mutants of several members of the family of cellular Rab GTPases that participate in regulation of transport through endosome vesicles and immunofluorescence colocalization. Together, the results presented demonstrate that in spite of the different internalization route among viral serotypes in Vero cells and regardless of the viral strain, DENV particles are first transported to early endosomes in a Rab5-dependent manner. Then a Rab7-dependent pathway guides DENV-2 16681 to late endosomes, whereas a yet unknown sorting event controls the transport of DENV-2 NGC, and most probably DENV-1 HW, to the perinuclear recycling compartments where fusion membrane would take place releasing nucleocapsid into the cytoplasm. Besides the demonstration of a different intracellular trafficking for two DENV-2 strains that shared the initial clathrin-independent internalization route, these studies proved for the first time the involvement of the slow recycling pathway for DENV-2 productive infection.  相似文献   

17.
EEA1 is an early endosomal Rab5 effector protein that has been implicated in the docking of incoming endocytic vesicles before fusion with early endosomes. Because of the presence of complex endosomal pathways in polarized and nonpolarized cells, we have examined the distribution of EEA1 in diverse cell types. Ultrastructural analysis demonstrates that EEA1 is present on a subdomain of the early sorting endosome but not on clathrin-coated vesicles, consistent with a role in providing directionality to early endosomal fusion. Furthermore, EEA1 is associated with filamentous material that extends from the cytoplasmic surface of the endosomal domain, which is also consistent with a tethering/docking role for EEA1. In polarized cells (Madin-Darby canine kidney cells and hippocampal neurons), EEA1 is present on a subset of "basolateral-type" endosomal compartments, suggesting that EEA1 regulates specific endocytic pathways. In both epithelial cells and fibroblastic cells, EEA1 and a transfected apical endosomal marker, endotubin, label distinct endosomal populations. Hence, there are at least two distinct sets of early endosomes in polarized and nonpolarized mammalian cells. EEA1 could provide specificity and directionality to fusion events occurring in a subset of these endosomes in polarized and nonpolarized cells.  相似文献   

18.
We recently reported an unconventional mechanism by which miRNAs inhibit HIV-1 viral production. This occurs when miRNAs bind nonspecifically to the viral structural protein Gag, interfering with viral RNA-mediated Gag assembly at the plasma membrane. Consequently, misassembled viral complexes are redirected into the endocytic pathway where they are delivered to lysosomes for degradation. In this study, we demonstrate that autophagy is a critical mediator of the viral degradation pathway and that this pathway is not HIV-1 specific. Misassembled viral complexes were found to colocalize extensively with LC3 and p62 in late endosomes/lysosomes, demonstrating a convergence of autophagy with functional degradative compartments. Knocking down autophagosome formation machineries reduced this convergence, while treatment with autophagy-inducer rapamycin enhanced the convergence. Furthermore, similar autophagy-dependent nonspecific miRNA inhibition of murine leukemia virus (MLV) assembly was shown. Overall, these results reveal autophagy as a crucial regulator of the retroviral degradation pathway in host cells initiated by nonspecific miRNA-Gag interactions. These findings could have significant implications for understanding how cells may regulate retroviral complex assembly by miRNA expression and autophagy, and raise the possibility that similar regulations can occur in other biological contexts.  相似文献   

19.
The canonical view of the ultimate steps of HIV-1 replication is that virus assembly and budding are taking place at the plasma membrane of infected cells. Surprisingly, recent studies revealed that these steps also occur on endosomal membranes in the interior of infected cells, such as macrophages. This prompted us to revisit the site of HIV-1 assembly in human epithelial-like cells and in infected human T-lymphoblastic cells. To address this question, we investigated the intracellular location of the major viral structural components of HIV-1, namely Gag, Env and the genomic RNA. Using a sub-cellular fractionation method, as well as immuno-confocal and electron microscopy, we show that Gag, the Env glycoproteins and the genomic RNA accumulate in late endosomes that contain infectious HIV-1 particles. In epithelial-like 293T cells, HIV-1 assembles and buds both at the plasma membrane and in endosomes, while in chronically infected human T lymphocytes, viral assembly mostly occurs within the cell where large amounts of infectious virions accumulate in endosomal compartments. In addition, HIV-1 release could be enhanced by ionomycin, a drug stimulating calcium-dependent exocytosis. These results favour the view that newly made Gag molecules associate with the genomic RNA in the cytosol, then viral core complexes can be targeted to late endosomes together with Env, where infectious HIV-1 are made and subsequently released by exocytosis.  相似文献   

20.
The endocytic pathway depends on the actin cytoskeleton. Actin contributes to internalization at the plasma membrane and to subsequent trafficking steps like propulsion through the cytoplasm, fusion of phagosomes with early endosomes, and transport from early to late endosomes. In vitro studies with mammalian endosomes and yeast vacuoles implicate actin in membrane fusion. Here, we investigate the function of the actin coat that surrounds late endosomes in Dictyostelium. Latrunculin treatment leads to aggregation of these endosomes into grape-like clusters and completely blocks progression of endocytic marker. In addition, the cells round up and stop moving. Because this drug treatment perturbs all actin assemblies in the cell simultaneously, we used a novel targeting approach to specifically study the function of the cytoskeleton in one subcellular location. To this end, we constructed a hybrid protein targeting cofilin, an actin depolymerizing protein, to late endosomes. As a consequence, the endosomal compartments lost their actin coats and aggregated, but these cells remained morphologically normal, and the kinetics of endocytic marker trafficking were unaltered. Therefore, the actin coat prevents the clustering of endosomes, which could be one safeguard mechanism precluding their docking and fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号