首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Nicotinic acid (NA) and nicotinamide (NAM) are major forms of niacin and exert their physiological functions as precursors of nicotinamide adenine dinucleotide (NAD). Sirtuins, which are NAD-dependent deacetylases, regulate glucose and lipid metabolism and are implicated in the pathophysiology of aging, diabetes, and hepatic steatosis. The aim of this study was to investigate the effects of two NAD donors, NA and NAM, on glucose metabolism and the hepatic NAD-sirtuin pathway. The effects were investigated in OLETF rats, a rodent model of obesity and type 2 diabetes. OLETF rats were divided into five groups: (1) high fat (HF) diet, (2) HF diet and 10 mg NA/kg body weight (BW)/day (NA 10), (3) HF diet and 100 mg NA/kg BW/day (NA 100), (4) HF diet and 10 mg NAM/kg BW/day (NAM 10), and (5) HF diet and 100 mg NAM/kg BW/day (NAM 100). NA and NAM were delivered via drinking water for four weeks. NAM 100 treatment affected glucose control significantly, as shown by lower levels of accumulative area under the curve during oral glucose tolerance test, serum fasting glucose, serum fasting insulin, and homeostasis model assessment of insulin resistance, and higher levels of serum adiponectin. With regard to NAD-sirtuin pathway, intracellular nicotinamide phosphoribosyltransferase, NAD, the NAD/NADH ratio, Sirt1, 2, 3, and 6 mRNA expressions, and Sirt1 activity all increased in livers of NAM 100-treated rats. These alterations were accompanied by the increased levels of proliferator-activated receptor gamma, coactivator 1 alpha and mitochondrial DNA. The effect of NA treatment was less evident than that of NAM 100. These results demonstrate that NAM is more effective than NA on the regulation of glucose metabolism and the NAD-sirtuin pathway, which may relate to the altered mitochondrial biogenesis.  相似文献   

3.
4.
Utilization and metabolism of NAD by Haemophilus parainfluenzae   总被引:2,自引:0,他引:2  
The utilization of exogenous nicotinamide adenine dinucleotide (NAD) by Haemophilus parainfluenzae was studied in suspensions of whole cells using radiolabelled NAD, nicotinamide mononucleotide (NMN), and nicotinamide ribonucleoside (NR). The utilization of these compounds by H. parainfluenzae has the following characteristics. (1) NAD is not taken up intact, but rather is degraded to NMN or NR prior to internalization. (2) Uptake is carrier-mediated and energy-dependent with saturation kinetics. (3) There is specificity for the beta-configuration of the glycopyridine linkage. (4) An intact carboxamide groups is required on the pyridine ring. The intracellular metabolism of NAD was studied in crude cell extracts and in whole cells using carbonyl-14C-labelled NR, NMN, NAD, nicotinamide, and nicotinic acid as substrates in separate experiments. A synthetic pathway from NR through NMN to NAD that requires Mg2+ and ATP was demonstrated. Nicotinamide was found as an end-product of NAD degradation. Nicotinic acid mononucleotide and nicotinic acid adenine dinucleotide were not found as intermediates. The NAD synthetic pathway in H. parainfluenzae differs from the Preiss-Handler pathway and the pyridine nucleotide cycles described in other bacteria.  相似文献   

5.
NAD(+) is an essential coenzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+)-consuming enzymes. Nicotinamide riboside is a recently discovered eukaryotic NAD(+) precursor converted to NAD(+) via the nicotinamide riboside kinase pathway and by nucleosidase activity and nicotinamide salvage. Nicotinamide riboside supplementation of yeast extends replicative life span on high glucose medium. The molecular basis for nicotinamide riboside uptake was unknown in any eukaryote. Here, we show that deletion of a single gene, YOR071C, abrogates nicotinamide riboside uptake without altering nicotinic acid or nicotinamide import. The gene, which is negatively regulated by Sum1, Hst1, and Rfm1, fully restores nicotinamide riboside import and utilization when resupplied to mutant yeast cells. The encoded polypeptide, Nrt1, is a predicted deca-spanning membrane protein related to the thiamine transporter, which functions as a pH-dependent facilitator with a K(m) for nicotinamide riboside of 22 microm. Nrt1-related molecules are conserved in particular fungi, suggesting a similar basis for nicotinamide riboside uptake.  相似文献   

6.
Although NAD(+) biosynthesis is required for Sir2 functions and replicative lifespan in yeast, alterations in NAD(+) precursors have been reported to accelerate aging but not to extend lifespan. In eukaryotes, nicotinamide riboside is a newly discovered NAD(+) precursor that is converted to nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. In this study, we discovered that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends lifespan without calorie restriction. The mechanism of action of nicotinamide riboside is totally dependent on increased net NAD(+) synthesis through two pathways, the Nrk1 pathway and the Urh1/Pnp1/Meu1 pathway, which is Nrk1 independent. Additionally, the two nicotinamide riboside salvage pathways contribute to NAD(+) metabolism in the absence of nicotinamide-riboside supplementation. Thus, like calorie restriction in the mouse, nicotinamide riboside elevates NAD(+) and increases Sir2 function.  相似文献   

7.
A previously undescribed nucleoside salvage pathway for NAD biosynthesis is defined in Salmonella typhimurium. Since neither nicotinamide nor nicotinic acid is an intermediate in this pathway, this second pyridine nucleotide salvage pathway is distinct from the classical Preiss-Handler pathway. The evidence indicates that the pathway is from nicotinamide ribonucleoside to nicotinamide mononucleotide (NMN) and then to nicotinic acid mononucleotide, followed by nicotinic acid adenine dinucleotide and NAD. The utilization of exogenous NMN for NAD biosynthesis has been reexamined, and in vivo evidence is provided that the intact NMN molecule traverses the membrane.  相似文献   

8.
9.
Mutants of Salmonella typhimurium LT-2 deficient in nicotinamidase activity (pncA) or nicotinic acid phosphoribosyltransferase activity (pncB) were isolated as resistant to analogs of nicotinic acid and nicotinamide. Information obtained from interrupted mating experiments placed the pncA gene at 27 units and the pncB gene at 25 units on the S. typhimurium LT-2 linkage map. A major difference in the location of the pncA gene was found between the S. typhimurium and Escherichia coli linkage maps. The pncA gene is located in a region in which there is a major inversion of the gene order in S. typhimurium as compared to that in E. coli. Growth experiments using double mutants blocked in the de novo pathway to nicotinamide adenine dinucleotide (NAD) (nad) and in the pyridine nucleotide cycle (pnc) at either the pncA or pncB locus, or both, have provided evidence for the existence of an alternate recycling pathway in this organism. Mutants lacking this alternate cycle, pncC, have been isolated and mapped via cotransduction at 0 units. Utilization of exogenous NAD was examined through the use of [14C]carbonyl-labeled NAD and [14C]adenine-labeled NAD. The results of these experiments suggest that NAD is degraded to nicotinamide mononucleotide at the cell surface. A portion of this extracellular nicotinamide mononucleotide is then transported across the cell membrane by nicotinamide mononucleotide glycohydrolase and degraded to nicotinamide in the process. The remaining nicotinamide mononucleotide accumulates extracellularly and will support the growth of nadA pncB mutants which cannot utilize the nicotinamide resulting from the major pathway of NAD degradation. A model is presented for the utilization of exogenous NAD by S. typhimurium LT-2.  相似文献   

10.
As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function.  相似文献   

11.
Claviceps purpurea grown on synthetic medium incorporated labeled [7-14]nicotinic acid and [7-14C]nicotinamide into NaMN, des-NAD, NAD, and NADP. Label also appeared in NMN and N-methyl nicotinamide. The specific activities of NAD, NADP, and NMN are compatible with the operation of the Preiss-Handler pathway of NAD biosynthesis (nicotinic acid → NaMN → des-NAD → NAD → NADP). The relative amounts of NaMN:des-NAD:NAD and NADP were about 8:1:36:10 on incubation of Claviceps with nicotinic acid for 6 hr. The incorporation of nicotinamide into NAD proceeds mainly by conversion to nicotinic acid catalyzed by nicotinamide deamidase.Tryptophan ([U-14C]benzene ring) was incorporated into NAD demonstrating the presence of the tryptophan-nicotinic acid pathway. No qualitative difference in pyridine nucleotide intermediates was noted in C. purpurea CPM, which does not produce clavine alkaloids, and Claviceps 47A which does produce clavine alkaloids.  相似文献   

12.
NAD is best known as an electron carrier and a cosubstrate of various redox reactions. However, over the past 20?years, NAD(+) has been shown to be a key signaling molecule that mediates post-translational protein modifications and serves as precursor of ADP-ribose-containing messenger molecules, which are involved in calcium mobilization. In contrast to its role as a redox carrier, NAD(+) -dependent signaling processes involve the release of nicotinamide (Nam) and require constant replenishment of cellular NAD(+) pools. So far, very little is known about the evolution of NAD(P) synthesis in eukaryotes. In the present study, genes involved in NAD(P) metabolism in 45 species were identified and analyzed with regard to similarities and differences in NAD(P) synthesis. The results show that the Preiss-Handler pathway and NAD(+) kinase are present in all organisms investigated, and thus seem to be ancestral routes. Additionally, two pathways exist that convert Nam to NAD(+) ; we identified several species that have apparently functional copies of both biosynthetic routes, which have been thought to be mutually exclusive. Furthermore, our findings suggest the parallel phylogenetic appearance of Nam N-methyltransferase, Nam phosphoribosyl transferase, and poly-ADP-ribosyltransferases.  相似文献   

13.
Most cancer cells have high need for nicotinamide adenine dinucleotide (NAD+) to sustain their survival. This led to the development of inhibitors of nicotinamide (NAM) phosphoribosyltransferase (NAMPT), the rate-limiting NAD+ biosynthesis enzyme from NAM. Such inhibitors kill cancer cells in preclinical studies but failed in clinical ones. To identify parameters that could negatively affect the therapeutic efficacy of NAMPT inhibitors and propose therapeutic strategies to circumvent such failure, we performed metabolomics analyses in tumor environment and explored the effect of the interaction between microbiota and cancer cells. Here we show that tumor environment enriched in vitamin B3 (NAM) or nicotinic acid (NA) significantly lowers the anti-tumor efficacy of APO866, a prototypic NAMPT inhibitor. Additionally, bacteria (from the gut, or in the medium) can convert NAM into NA and thus fuel an alternative NAD synthesis pathway through NA. This leads to the rescue from NAD depletion, prevents reactive oxygen species production, preserves mitochondrial integrity, blunts ATP depletion, and protects cancer cells from death.Our data in an in vivo preclinical model reveal that antibiotic therapy down-modulating gut microbiota can restore the anti-cancer efficacy of APO866. Alternatively, NAphosphoribosyltransferase inhibition may restore anti-cancer activity of NAMPT inhibitors in the presence of gut microbiota and of NAM in the diet.Subject terms: Drug development, Cancer metabolism

  相似文献   

14.
Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia. Nicotinamidases are absent in mammals but function in NAD(+) salvage in many bacteria, yeast, plants, protozoa, and metazoans. We have performed structural and kinetic investigations of the nicotinamidase from Saccharomyces cerevisiae (Pnc1). Steady-state product inhibitor analysis revealed an irreversible reaction in which ammonia is the first product released, followed by nicotinic acid. A series of nicotinamide analogues acting as inhibitors or substrates were examined, revealing that the nicotinamide carbonyl oxygen and ring nitrogen are critical for binding and reactivity. X-ray structural analysis revealed a covalent adduct between nicotinaldehyde and Cys167 of Pnc1 and coordination of the nicotinamide ring nitrogen to the active-site zinc ion. Using this structure as a guide, the function of several residues was probed via mutagenesis and primary (15)N and (13)C kinetic isotope effects (KIEs) on V/K for amide bond hydrolysis. The KIE values of almost all variants were increased, indicating that C-N bond cleavage is at least partially rate limiting; however, a decreased KIE for D51N was indicative of a stronger commitment to catalysis. In addition, KIE values using slower alternate substrates indicated that C-N bond cleavage is at least partially rate limiting with nicotinamide to highly rate limiting with thionicotinamide. A detailed mechanism involving nucleophilic attack of Cys167, followed by elimination of ammonia and then hydrolysis to liberate nicotinic acid, is discussed. These results will aid in the design of mechanism-based inhibitors to target pathogens that rely on nicotinamidase activity.  相似文献   

15.
NAD(+) is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+) consuming enzymes. NAD(+) biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+) is synthesized from tryptophan and the three vitamin precursors of NAD(+): nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+) precursors increases intracellular NAD(+) levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+) metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+) metabolism by balancing import and export of NAD(+) precursor vitamins.  相似文献   

16.
Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which is derived from NAD, have important roles as a redox carriers in metabolism. A combination of de novo and salvage pathways contribute to the biosynthesis of NAD in all organisms. The pathways and enzymes of the NAD salvage pathway in yeast and animals, which diverge at nicotinamide, have been extensively studied. Yeast cells convert nicotinamide to nicotinic acid, while mammals lack the enzyme nicotinamidase and instead convert nicotinamide to nicotinamide mononucleotide. Here we show that Arabidopsis thaliana gene At2g22570 encodes a nicotinamidase, which is expressed in all tissues, with the highest levels observed in roots and stems. The 244-residue protein, designated AtNIC1, converts nicotinamide to nicotinic acid and has a Km value of 118 +/- 17 microM and a Kcat value of 0.93 +/- 0.13 sec(-1). Plants homozygous for a null AtNIC1 allele, nic1-1, have lower levels of NAD and NADP under normal growth conditions, indicating that AtNIC1 participates in a yeast-type NAD salvage pathway. Mutant plants also exhibit hypersensitivity to treatments of abscisic acid and NaCl, which is correlated with their inability to increase the cellular levels of NAD(H) under these growth conditions, as occurs in wild-type plants. We also show that the growth of the roots of wild-type but not nic1-1 mutant plants is inhibited and distorted by nicotinamide.  相似文献   

17.
In order to elucidate the mechanism of the accumulation of considerable amounts of free nicotinic acid (NA) in the culture medium of Clostridium butylicum, this organism was investigated with regard to its ability to metabolize nicotinamide adenine dinucleotide (NAD) and its immediate biosynthetic precursors, nicotinic acid mononucleotide (NAMN) and nicotinic acid adenine dinucleotide (deamido-NAD). Cell-free extracts of C. butylicum were found to degrade NAMN and deamido-NAD to NA. NAMN, in the presence of adenosine triphosphate (ATP), was converted to deamido-NAD, but only at high concentrations of ATP (20 mM) was significant synthetic activity observed in competition with NAMN degradation. Degradation of both NAMN and deamido-NAD was activated by ATP at concentrations of 5 and 10 mm. Anaerobiosis markedly enhanced the degradation of the nucleotides. The data indicate that the synthesis of NAMN and deamido-NAD prevails over their degradation only in the presence of high concentrations of ATP. NAD was degraded to nicotinamide mononucleotide (NMN) by a pyrophosphatase. Phosphate markedly inhibited both the deamido-NAD and NAD pyrophosphatases. Under anaerobic conditions there was practically no further degradation of NMN to NA, whereas barely measurable amounts of NA were formed under aerobic conditions. All of these observations suggest that, under the given conditions of anaerobiosis and physiological phosphate concentrations, there is very little degradation of NAD to NMN and practically no degradation to NA by C. butylicum. Thus, NAD represents an insignificant source of the NA accumulated in the culture medium. The intermediates in the biosynthetic pathway (NAMN and deamido-NAD) have been shown to be the major source of the NA which is accumulated by C. butylicum.  相似文献   

18.
Cell-free extracts of Aspergillus niger UBC 814 grown in the presence of dl-mandelate oxidized both d(-)- and l(+)-mandelate via benzoylformate and benzaldehyde to benzoate. dl-p-Hydroxymandelate was oxidized, presumably through a parallel pathway, to p-hydroxybenzoate. A particulate d(-)-mandelate dehydrogenase and a supernatant fraction l(+)-mandelate dehydrogenase converted their respective substrates to benzoylformate. Both flavine adenine dinucleotide and flavine mononucleotide showed a stimulatory effect on the activity of the l(+)-mandelate dehydrogenase. Benzoylformate was decarboxylated to benzaldehyde by an enzyme requiring thiamine pyrophosphate for maximal activity. Two benzaldehyde dehydrogenases dependent on nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), respectively, for their activity dehydrogenated benzaldehyde to benzoate. In the presence of reduced NADP (NADPH), benzoate was oxidized via p-hydroxybenzoate and protocatechuate. Reduced NAD could not replace NADPH. Sensitive methods of assay for d(-)-mandelate dehydrogenase and benzoylformate decarboxylase are described. The fungal pathway is compared with these systems in bacteria.  相似文献   

19.
20.
1. The relative efficiencies of nicotinate, quinolinate and nicotinamide as precursors of NAD(+) were measured in the first leaf of barley seedlings. 2. In small amounts, both [(14)C]nicotinate and [(14)C]quinolinate were quickly and efficiently incorporated into NAD(+) and some evidence is presented suggesting that NAD(+) is formed from each via nicotinic acid mononucleotide and deamido-NAD. 3. [(14)C]Nicotinamide served equally well as a precursor of NAD(+) and although significant amounts of [(14)C]NMN were detected, most of the [(14)C]NAD(+) was derived from nicotinate intermediates formed by deamination of [(14)C]nicotinamide. 4. Radioactive NMN was also a product of the metabolism of [(14)C]nicotinate and [(14)C]quinolinate but most probably it arose from the breakdown of [(14)C]NAD(+). 5. In barley leaves where the concentration of NAD(+) is markedly increased by infection with Erysiphe graminis, the pathways of NAD(+) biosynthesis did not appear to be altered after infection. A comparison of the rates of [(14)C]NAD(+) formation in infected and non-infected leaves indicated that the increase in NAD(+) content was not due to an increased rate of synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号