首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: In developing chicken brain Ca2+/calmodulin-stimulated protein kinase II (CaMPK-II) changes from being primarily cytosolic to being primarily particulate during the protracted maturation period. To investigate whether thyroid hormone levels may be involved in regulating this subcellular redistribution, we raised chickens from 1 day posthatching on food soaked in 0.15% (wt/vol) propylthiouracil (PTU) plus 0.05% (wt/vol) methimazole (MMI). This produced a mild hypothyroidism specifically during the maturation period and resulted in a 67% reduction in the levels of free triiodothyronine (T3) at 42 days. The concentrations of α- and β-CaMPK-II in cytosol (S3) and crude synaptic membrane (P2M) fractions from forebrain were measured by three methods: Ca2+/calmodulin- or Zn2+-stimulated autophosphorylation or binding of biotinylated calmodulin. By all three methods hypothyroid animals showed a marked retardation of the redistribution of both subunits of CaMPK-II: an increase in the concentration of the enzyme in S3 and a corresponding decrease in P2M with no overall change in the total amount of enzyme and little apparent change in the concentration of other proteins. In both fractions, there was a parallel change in the Ca2+/calmodulin-stimulated phosphorylation of endogenous protein substrates but no change in the basal or cyclic AMP-stimulated protein phosphorylation. Supplementing the PTU/MMI-treated diet with thyroxine (0.5 ppm) prevented all of the observed changes.  相似文献   

2.
Mammalian spermatozoa have been shown to possess cAMP-dependent protein kinase (A-PK) and endogenous substrate proteins for this enzyme. A study of the kinase system was undertaken to determine changes that may be associated with sperm maturation by comparing immature testicular with mature cauda epididymal and ejaculated spermatozoa. Absolute activity levels of A-PK, stimulated over a concentration range of 10?9 to 10?5 M, was significantly greater in testicular than ejaculated spermatozoa. At an optimal cAMP concentration (10?6M), testicular spermatozoa had significantly greater amounts of cAMP-dependent protein kinase activity than did cauda or ejaculated spermatozoa. Electrophoretic analysis and autoradiography of NP-40-soluble protein extracts revealed the presence of two substrate proteins (Mr = 62,000 and 44,000) in all three types of spermatozoa. In addition, a phosphoprotein (Mr = 20,000) was detected in mature cauda and ejaculated but not immature testicular spermatozoa. The phosphorylation of these substrate proteins was both dose and time dependent. Examination of cyclic AMP phosphodiesterase activity revealed significantly higher levels in testicular than ejaculated spermatozoa. These results indicate marked alterations in cAMP-modulated protein phosphorylation and dephosphorylation systems in ram spermatozoa during epididymal maturation.  相似文献   

3.
Synaptic junctions (SJs) from rat forebrain were isolated at increasing postnatal ages and examined for endogenous protein kinase activities. Our studies focused on the postnatal maturation of the multifunctional protein kinase designated Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II). This kinase is comprised of a major 50-kilodalton (kDa) and a minor 60-kDa subunit. Experiments examined the developmental properties of CaM-kinase II associated with synaptic plasma membranes (SPMs) and synaptic junctions (SJs), as well as the holoenzyme purified from cytosolic extracts. Large developmental increases in CaM-kinase II activity of SJ fractions were observed between postnatal days 6 and 20; developmental changes were examined for a number of properties including (a) autophosphorylation, (b) endogenous substrate phosphorylation, (c) exogenous substrate phosphorylation, and (d) immunoreactivity. Results demonstrated that forebrain CaM-kinase II undergoes a striking age-dependent change in subunit composition. In early postnatal forebrain the 60-kDa subunit constitutes the major catalytic and immunoreactive subunit of the holoenzyme. The major peak of CaM-kinase II activity in SJ fractions occurred at approximately postnatal day 20, a time near the end of the most active period of in vivo synapse formation. Following this developmental age, CaM-kinase II continued to accumulate at SJs; however, its activity was not as highly activated by Ca2+ plus calmodulin.  相似文献   

4.
Calmodulin-Dependent Protein Phosphorylation in Synaptic Junctions   总被引:8,自引:4,他引:4  
Synaptic junctions (SJs) from rat forebrain were examined for Ca2+/calmodulin (CaM)-dependent kinase activity and compared to synaptic plasma membrane (SPM) and postsynaptic density (PSD) fractions. The kinase activity in synaptic fractions was examined for its capacity to phosphorylate endogenous proteins or exogenous synapsin I, in the presence or absence of Ca2+ plus CaM. When assayed for endogenous protein phosphorylation, SJs contained approximately 25-fold greater amounts of Ca2+/CAM-dependent kinase activity than SPMs, and fivefold more activity than PSDs. When kinase activities were measured by phosphorylation of exogenous synapsin I, SJs contained fourfold more activity than SPMs, and 10-fold more than PSDs. The phosphorylation of SJ proteins of 60- and 50-kilodalton (major PSD protein) polypeptides were greatly stimulated by Ca2+/CaM; levels of phosphorylation for these proteins were 23- and 17-fold greater than basal levels, respectively. Six additional proteins whose phosphorylation was stimulated 6-15-fold by Ca2+/CAM were identified in SJs. These proteins include synapsin I, and proteins of 240, 207, 170, 140, and 54 kilodaltons. The 54-kilodalton protein is a highly phosphorylated form of the major PSD protein and the 170-kilodalton component is a cell-surface glycoprotein of the postsynaptic membrane that binds concanavalin A. The CaM-dependent kinase in SJ fractions phosphorylated endogenous phosphoproteins at serine and/or threonine residues. Ca2+-dependent phosphorylation in SJ fractions was strictly dependent on exogenous CaM, even though SJs contained substantial amounts of endogenous CaM (15 micrograms CaM/mg SJ protein). Exogenous CaM, after being functionally incorporated into SJs, was rapidly removed by sequential washings. These observations suggest that the SJ-associated CaM involved in regulating Ca2+-dependent protein phosphorylation may be in dynamic equilibrium with the cytoplasm. These findings indicate that a brain CaM-dependent kinase(s) and substrate proteins are concentrated at SJs and that CaM-dependent protein phosphorylation may play an important role in mechanisms that underlie synaptic communication.  相似文献   

5.
Autophosphorylation of Ca(2+)-calmodulin stimulated protein kinase II (CaMKII) at two sites (Thr286 and Thr305/306) is known to regulate the subcellular location and activity of this enzyme in vivo. CaMKII is also known to be autophosphorylated at Thr253 in vitro but the functional effect of phosphorylation at this site and whether it occurs in vivo, is not known. Using antibodies that specifically recognize CaMKII phosphorylated at Thr253 together with FLAG-tagged wild type and phospho- and dephospho-mimic mutants of alpha-CaMKII, we have shown that Thr253 phosphorylation has no effect on either the Ca(2+)-calmodulin dependent or autonomous kinase activity of recombinant alpha-CaMKII in vitro. However, the Thr253Asp phosphomimic mutation increased alpha-CaMKII binding to subcellular fractions enriched in post-synaptic densities (PSDs). The increase in binding was similar in extent, and additive, to that produced by phosphorylation of Thr286. Thr253 phosphorylation was dynamically regulated in intact hippocampal slices. KCl induced depolarisation increased Thr253 phosphorylation and the phospho-Thr253-CaMKII was specifically recovered in the subcellular fraction enriched in PSDs. These results identify Thr253 as an additional site at which CaMKII is phosphorylated in vivo and suggest that this dynamic phosphorylation may regulate CaMKII function by altering its distribution within the cell.  相似文献   

6.
Forskolin, an activator of adenylate cyclase, stimulates adrenocorticotropin (ACTH) release and increases proopiomelanocortin mRNA levels in anterior pituitary cells by enhancing cyclic AMP (cAMP)-dependent protein kinase activity. The phorbol ester phorbol 12-myristate 13-acetate (PMA) evokes these same responses from anterior pituitary cells by activating protein kinase C. Both protein kinases most likely induce their cellular effects by catalyzing the phosphorylation of specific proteins. To elucidate the mechanisms by which cAMP-dependent protein kinase and protein kinase C promote ACTH secretion and synthesis, the phosphoproteins regulated by forskolin and PMA were identified in the cell line AtT-20, which consists of a homogeneous population of corticotrophs. Phosphoproteins were analyzed in different subcellular fractions by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Forskolin increased phosphate incorporation into two proteins in the cytoplasmic fraction of 24 kilodaltons (kd) (pI 6.8) and 40 kd (pI 5.8), two proteins in the plasma membrane fraction of 32 kd (pI 8.3) and 60 kd (pI 8), and one protein in the nuclear fraction of 20 kd (pI 8.7). Insertion of the inhibitor of cAMP-dependent protein kinase into the AtT-20 cells, using a liposome technique, blocked the rise in phosphate incorporation induced by forskolin. PMA also stimulated phosphate incorporation into proteins in AtT-20 cells. PMA increased the phosphorylation of three cytoplasmic proteins of 25 kd (pI 7.6), 40 kd (pI 5.8), and 40 kd (pI 8.1) as well as two membrane proteins of 32 kd (pI 8.3) and 60 kd (pI 8) and one nuclear protein of 20 kd (pI 6.3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The relationship between postnatal age and protein tyrosine kinase activity in synaptosomes prepared from the rat forebrain was studied. Synaptosomal particulate and soluble fractions, as well as total homogenates, the cell soluble fraction, and P3, were prepared from rats ranging in postnatal age from 5 to 60 days and analyzed for (a) tyrosine kinase activity using polyglutamyltyrosine (4:1) as the substrate, (b) the presence of endogenous substrates for tyrosine phosphorylation using polyclonal antibodies specific for phosphotyrosine, and (c) levels of pp60src. Enzyme activity, expressed per milligram of protein, in the total homogenate, P3, and both the cell and synaptosomal soluble fractions was highest in the brains of young animals (postnatal days 5-10) and decreased thereafter to adult levels. In contrast, tyrosine kinase activity in the synaptosomal particulate fraction exhibited a unique biphasic developmental profile, increasing to maxima at postnatal days 10 and 20 before decreasing to adult values. Endogenous substrates for tyrosine phosphorylation were identified by incubating subcellular fractions with 2 mM ATP in the presence of sodium orthovanadate and probing nitrocellulose blots of proteins separated by gel electrophoresis with antiphosphotyrosine antibodies. Several phosphotyrosine-containing proteins were detected in the synaptosomal particulate and P3 fractions, including proteins of Mr 180K, 145K, 120K, 100K, 77K, 68K, 62K, 54K, 52K, and 42K. In the cell soluble fraction a protein doublet of Mr 54/52K and a 120K protein were the major phosphotyrosine-containing proteins. The 54/52K doublet was the major protein tyrosine kinase substrate in the synaptosomal soluble fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Calmodulin Kinase II in Pure Cultured Astrocytes   总被引:3,自引:3,他引:0  
Calcium- and calmodulin-dependent protein kinase activity was studied in pure neuronal and glial cultures. The addition of calcium and calmodulin stimulated 32P incorporation into several neuronal proteins including two in the 50- and 60-kilodalton (kD) region which comigrated with purified forebrain calmodulin kinase II subunits (CaM kinase II). In mature astrocytes, CaM kinase activity was also present, and was inhibited by trifluoroperazine and diazepam. Again in homogenates of these cells, two phosphoproteins of apparent molecular masses of 50 and 60 kD comigrated with purified CaM kinase. CaM kinase activity was absent in immature mixed glia and oligodendrocytes. The presence of CaM kinase in neurons and mature astrocytes was confirmed using monoclonal antibodies specific for the 50-kD subunit of the enzyme. No immunoreactivity was observed in oligodendrocytes. The presence of CaM kinase in astrocytes suggests a more ubiquitous role of this enzyme in regulating cellular processes than was previously recognized.  相似文献   

9.
10.
11.
The activity and subcellular distribution of protein phosphatases 1 and 2A were measured in chicken forebrain and cerebellum during post-hatch development. At all post-hatch ages, a large proportion of PP1 and PP2A was membrane bound and these enzymes were less active than their cytosolic counterparts. The protein concentration of PP1 in the membranes increased 40% between 2 and 14 days and a further 60% between 14 days and adult, whereas the PP1 enzyme activity in the membranes progressively decreased. In contrast to PP1, the protein concentration of PP2A remained constant in all fractions during post-hatch development, and the enzyme activity of PP2A did not change except for a decrease in the membrane-bound activity between 2 and 14 days. These results show that the subcellular distribution and activity of PP1 is selectively regulated during post-hatch development and that membrane association and inactivation of PP1 are independent events.  相似文献   

12.
To explore the nature of differences in uptake by renal brush border vesicles from animals of different ages, vesicles were isolated from 7-day old and adult rats by a Mg-aggregation method. A number of criteria were compared in vesicles from the young and mature animals. The vesicles isolated from animals of both ages appear similar on electron microscopy, in response to osmotic changes, and in uptake kinetics for L-glucose. Despite these parameters which indicate no basic differences between the membranes of young and mature kidney, differences in proline and sodium handling are seen. When compared to the uptake pattern seen in vesicles from adult animals, the height of the sodium gradient-stimulated proline overshoot is diminished and sodium entry is faster in vesicles of the 7-day old rats. These are the same differences which were found in vesicles prepared by differential centrifugation from 7-day old animals. In addition, although sodium efflux was faster from vesicles of immature kidney and mirrored the faster sodium entry, proline efflux was slower. The data indicate a dissociation of proline and sodium fluxes in brush borders of the young rat kidney.  相似文献   

13.
Incubation of subcellular fractions of fibroblasts with [32P]ATP demonstrated 10 phosphoproteins whose phosphorylation can be increased by cyclic AMP or cyclic AMP-dependent protein kinase. One of these phosphoproteins, MW 240,000, resembles the actin binding protein, filamin, and can be selectively precipitated by antibodies to chicken gizzard filamin. Furthermore chicken gizzard filamin can be phosphorylated by skeletal muscle protein kinase and cyclic AMP stimulates this reaction.  相似文献   

14.
Evidence accumulated from clinical and basic research has indirectly implicated the insulin receptor (IR) in brain cognitive functions, including learning and memory (Wickelgren, I. (1998) Science 280, 517-519). The present study investigates correlative changes in IR expression, phosphorylation, and associated signaling molecules in the rat hippocampus following water maze training. Although the distribution of IR protein matched that of IR mRNA in most forebrain regions, a dissociation of the IR mRNA and protein expression patterns was found in the cerebellar cortex. After training, IR mRNA in the CA1 and dentate gyrus of the hippocampus was up-regulated, and there was increased accumulation of IR protein in the hippocampal crude synaptic membrane fraction. In the CA1 pyramidal neurons, changes in the distribution pattern of IR in particular cellular compartments, such as the nucleus and dendritic regions, was observed only in trained animals. Although IR showed a low level of in vivo tyrosine phosphorylation, an insulin-stimulated increase of in vitro Tyr phosphorylation of IR was detected in trained animals, suggesting that learning may induce IR functional changes, such as enhanced receptor sensitivity. Furthermore, a training-induced co-immunoprecipitation of IR with Shc-66 was detected, along with changes in in vivo Tyr phosphorylation of Shc and mitogen-activated protein kinase, as well as accumulation of Shc-66, Shc-52, and Grb-2 in hippocampal synaptic membrane fractions following training. These findings suggest that IR may participate in memory processing through activation of its receptor Tyr kinase activity, and they suggest possible engagement of Shc/Grb-2/Ras/mitogen-activated protein kinase cascades.  相似文献   

15.
The rat CNS contains high levels of tyrosine-specific protein kinases that specifically phosphorylate the tyrosine-containing synthetic peptide poly(Glu80,Tyr20). The phosphorylation of this peptide is rapid and occurs with normal Michaelis-Menten kinetics. Using this peptide to assay for enzyme activity, we have measured the protein tyrosine kinase activity in homogenates from various regions of rat CNS. A marked regional distribution pattern was observed, with high activity present in cerebellum, hippocampus, olfactory bulb, and pyriform cortex, and low activity in the pons/medulla and spinal cord. The distribution of protein tyrosine kinase activity was examined in various subcellular fractions of rat forebrain. The majority of the activity was associated with the particulate fractions, with enrichment in the crude microsomal (P3) and crude synaptic vesicle (LP2) fractions. Moreover, the subcellular distribution of pp60csrc, a well-characterized protein tyrosine kinase, was examined by immunoblot analysis using an affinity-purified antibody specific for pp60csrc. The subcellular distribution of pp60csrc paralleled the overall protein tyrosine kinase activity. In addition, using an antibody specific for phosphotyrosine, endogenous substrates for protein tyrosine kinases were demonstrated on immunoblots of homogenates from the various regions and the subcellular fractions. The immunoblots revealed numerous phosphotyrosine-containing proteins that were present in many of the CNS regions examined and were associated with specific subcellular fractions. The differences in tyrosine-specific protein kinase activity, and in phosphotyrosine-containing proteins, observed in various regional areas and subcellular fractions may reflect specific functional roles for protein tyrosine kinase activity in mammalian brain.  相似文献   

16.
Focal adhesion kinase (FAK) and the related proline-rich tyrosine kinase 2 (PYK2) are non-receptor protein tyrosine kinases that transduce extracellular signals through the activation of Src family kinases and are highly enriched in neurones. To further elucidate the regulation of FAK and PYK2 in nervous tissue, we investigated their distribution in brain subcellular fractions and analysed their translocation between membrane and cytosolic compartments. We have found that FAK and PYK2 are present in a small membrane-associated pool and a larger cytosolic pool in various neuronal compartments including nerve terminals. In intact nerve terminals, inhibition of Src kinases inhibited the membrane association of FAK, but not of PYK2, whereas tyrosine phosphatase inhibition sharply increased the membrane association of both FAK and PYK2. Disruption of the actin cytoskeleton was followed by a decrease in the membrane-associated pool of FAK, but not of PYK2. For both kinases, a significant correlation was found between autophosphorylation and membrane association. The data indicate that FAK and PYK2 are present in nerve terminals and that the membrane association of FAK is regulated by both phosphorylation and actin assembly, whereas that of PKY2 is primarily dependent on its phosphorylation state.  相似文献   

17.
Purified P400 protein was phosphorylated by both purified Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and the catalytic subunit of cyclic AMP-dependent protein kinase (A-kinase). Because P400 protein was suggested to function as an integral membrane protein, we investigated the phosphorylation of P400 protein using crude mitochondrial and microsomal fractions (P2/P3 fraction). Incubation of the P2/P3 fraction from mouse cerebellum with cyclic AMP or the catalytic subunit of A-kinase stimulated the phosphorylation of P400 protein. The phosphorylation of P400 protein was not observed in the P2/P3 fraction from mouse forebrain. Cyclic AMP and A-kinase enhanced the phosphorylation of several proteins, including P400 protein, suggesting that P400 protein is one of the best substrates for A-kinase in the P2/P3 fraction. Although endogenous and exogenous CaM kinase II stimulated the phosphorylation of some proteins in the P2/P3 fraction, the phosphorylation of P400 protein was weak. Immunoprecipitation with the monoclonal antibody to P400 protein confirmed that the P400 protein itself was definitely phosphorylated by the catalytic subunit of A-kinase and CaM kinase II. A-kinase phosphorylated only the seryl residue in P400 protein. Immunoblot analysis of the cells in primary culture of mouse cerebellum confirmed the expression of P400 protein, which migrated at the same position on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that in the P2/P3 fraction. Incubation of the cultured cerebellar cells with [32P]orthophosphate resulted in the labeling of P400 protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In the preceding papers, we demonstrated that the endogenous phosphorylation of a 29,000-dalton protein is stimulated in response to secretagogue application to intact cells from the rat exocrine pancreas and parotid and dephosphorylated upon termination of secretagogue action. One- and two-dimensional gel analysis of 32Pi-labeled pancreatic and parotid lobules as well as their respective subcellular fractions revealed that the same protein was covalently modified in both tissues and was localized to the ribosomal fraction. To identify the intracellular second messengers which may mediate or modulate the phosphorylation of the 29,000-dalton protein in intact cells, the effects of Ca2+, cAMP, and cGMP on the endogenous phosphorylation of this protein were assessed in subcellular fractions from the rat pancreas and parotid. Our results demonstrate that the phosphorylation of the 29,000-dalton polypeptide may be regulated by both Ca2+ and cAMP in the pancreas and in the parotid. No cGMP-dependent protein phosphorylation was found in either tissue. As in the in situ phosphorylation studies, the Ca2+- and cAMP-dependent phosphorylation of this same protein was localized to the ribosomal fraction. The cAMP-dependent protein kinase activity was found primarily in the postmicrosomal supernatant in contrast to the Ca2+-dependent protein kinase that appeared to be tightly associated with the substrate in addition to being present in the postmicrosomal supernatant. The data suggest that, in cells from the exocrine pancreas and parotid, secretagogues may regulate the phosphorylation of the 29,000-dalton protein through Ca2+ and/or cAMP.  相似文献   

19.
The activity of calcium-, phospholipid-dependent protein kinase (PKc) was measured in (a) total extracts, (b) crude membrane, and (c) cytosolic fractions of chick embryo myogenic cells differentiating in culture. Total PKc activity slowly declines during the course of terminal myogenesis in contrast to the activity of cAMP-dependent protein kinase, which was also measured in the same cells. Myogenic cells at day 1 of culture possess high particulate and low soluble PKc activity. A dramatic decline of particulate PKc activity occurs during myogenic cell differentiation and is accompanied, through day 4, by a striking rise of the soluble activity. The difference in the subcellular distribution of PKc between replicating myoblasts and myotubes is confirmed by phosphorylation studies conducted in intact cells. These studies demonstrate that four polypeptides whose phosphorylation is stimulated by the tumor promoter 12-O-tetradecanoyl phorbol 13-acetate in myotubes, are spontaneously phosphorylated in control myoblasts. Phosphoinositide turnover under basal conditions in [3H]inositol-labeled cells is faster in myoblasts than in myotubes, a finding that may in part explain the different distribution of PKc observed during the course of myogenic differentiation.  相似文献   

20.
Abstract: Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr286 generates Ca2+-independent activity. As an initial step toward understanding CaMKII inactivation, protein phosphatase classes (PP1, PP2A, PP2B, or PP2C) responsible for dephosphorylation of Thr286 in rat forebrain subcellular fractions were identified using phosphatase inhibitors/activators, by fractionation using ion exchange chromatography and by immunoblotting. PP2A-like enzymes account for >70% of activity toward exogenous soluble Thr286-autophosphorylated CaMKII in crude cytosol, membrane, and cytoskeletal extracts; PP1 and PP2C account for the remaining activity. CaMKII is present in particulate fractions, specifically associated with postsynaptic densities (PSDs); each protein phosphatase is also present in isolated PSDs, but only PP1 is enriched during PSD isolation. When isolated PSDs dephosphorylated exogenous soluble Thr286-autophosphorylated CaMKII, PP2A again made the major contribution. However, CaMKII endogenous to PSDs (32P autophosphorylated in the presence of Ca2+/calmodulin) was predominantly dephosphorylated by PP1. In addition, dephosphorylation of soluble and PSD-associated CaMKII in whole forebrain extracts was catalyzed predominantly by PP2A and PP1, respectively. Thus, soluble and PSD-associated forms of CaMKII appear to be dephosphorylated by distinct enzymes, suggesting that Ca2+-independent activity of CaMKII is differentially regulated by protein phosphatases in distinct subcellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号