首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here results on forward mutation induction (recessive lethal mutations, RL) in Drosophila spermatozoa and spermatids by the three 1,2-alkyl-epoxides ethylene oxide (EO), propylene oxide (PO) and butylene oxide (BO), at doses ranging from 47 to 24,000 ppm h for EO, 375 to 48,000 ppm h for PO, and 24,000 to 91,200 ppm h for BO. The results indicate for EO mutation induction at doses 500-fold below the LD50. In crosses of mutagenized NER+ males with NER+ females, the 500-fold increase in EO dose from 47 ppm h to 24,000 ppm h resulted in no more than a 17-fold enhanced mutant frequency in spermatozoa. This flat dose–response relationship is primarily the result of efficient repair of EO-induced DNA adducts in the fertilized egg, as was evident from the up to 40-fold or 240-fold increased mutant frequencies above NER or NER+ background levels, respectively, in crosses with NER females. With decreasing dose, / ratios decreased from 9 to 14 at high doses down to ≈1 at the two lowest doses, indicating that a small fraction of premutagenic lesions induced by EO cannot be repaired by the NER system of Drosophila. Linear extrapolation from high to low EO exposure led to an underestimation of the mutation frequency actually observed at low doses. The pattern of EO-induced ring chromosome loss (CL) differed in two respects from that observed for forward mutations: (a) an increase in CL frequencies was observed only at the two highest EO exposure levels, and (b) inactivation of the NER pathway by the mus201 mutant had no measurable effect on the occurrence of CL. The absence of a potentiating effect of mus201 on EO-induced clastogenicity suggests the formation of clastogenic DNA lesions not causing point mutations, and which are not repaired by NER. Consistent with an inversed correlation of reactivities towards N7-guanine and chain length of 1,2-alkyl-epoxides, the relative mutagenic efficiencies of EO:PO:BO are 100:7.2:1.8 for the NER+ groups, and 100:20:0.7 in the absence of NER. Although in Drosophila germ cells EO is also more effective as a clastogen than PO, the difference (EO:PO=100:58) is much smaller than for recessive mutations. These results provide another argument that DNA lesions generating base substitutions as opposed to those causing clastogenic damage may not be the same for these agents.  相似文献   

2.
Ethylene oxide (EO) is mutagenic in various in vitro and in vivo test systems and carcinogenic in rodents. EO forms different adducts upon reaction with DNA, N7-(2-hydroxyethyl)guanine (N7-HEG) being the main adduct. The major objectives of this study were: (a) to determine the formation and persistence of N7-HEG adducts in liver DNA of adult male rats exposed to 0, 50, 100 and 200 ppm by inhalation (4 weeks, 5 days/week, 6 h/day) and (b) to assess dose-response relationships for Hprt gene mutations and various types of chromosomal changes in splenic lymphocytes.N7-HEG adducts were measured 5, 21, 35 and 49 days after cessation of exposure. By extrapolation, the mean concentrations of N7-HEG immediately after cessation of exposure ('day 0') to 50, 100 and 200 ppm were calculated as 310, 558 and 1202 adducts/10(8) nucleotides, respectively, while the mean concentration in control rats was 2.6 adducts/10(8) nucleotides. At 49 days, N7-HEG values had returned close to background levels. The mean levels of N-(2-hydroxyethylvaline) adducts in haemoglobin were also determined and amounted 61.7, 114 and 247 nmol/g globin, respectively. Statistically significant linear relationships were found between mean N7-HEG levels ('day 0') and Hprt mutant frequencies at expression times 21/22 and 49/50 days and between mean N7-HEG ('day 0') and sister-chromatid exchanges (SCEs) or high frequency cells (HFC) measured 5 days post-exposure. At day 21 post-exposure, SCEs and HFCs in-part persisted and were significantly correlated with persistent N7-HEG adducts. No statistically significant dose effect relationships were observed for induction of micronuclei, nor for chromosome breaks or translocations.In conclusion, this study indicates that following sub-chronic exposure, EO is only weakly mutagenic in adult rats. Using the data of this study to predict cancer risk in man resulting from low level EO exposures in conjunction with other published data, i.e., those on (a) genotoxic effects of EO in humans and rats, (b) DNA binding of other carcinogens, (c) natural background DNA binding and (d) genotoxic potency of low energy transfer (LET) radiation, it is not expected that long term occupational exposure to airborne concentrations of EO at or below 1 ppm EO produces an unacceptable increased risk in man.  相似文献   

3.
Ethylene oxide (EO) is an important industrial chemical that is classified as a known human carcinogen (IARC, Group 1). It is also a metabolite of ethylene (ET), a compound that is ubiquitous in the environment and is the most used petrochemical. ET has not produced evidence of cancer in laboratory animals and is "not classifiable as to its carcinogenicity to humans" (IARC, Group 3). The mechanism of carcinogenicity of EO is not well characterized, but is thought to involve the formation of DNA adducts. EO is mutagenic in a variety of in vitro and in vivo systems, whereas ET is not. Apurinic/apyrimidinic sites (AP) that result from chemical or glycosylase-mediated depurination of EO-induced DNA adducts could be an additional mechanism leading to mutations and chromosomal aberrations. This study tested the hypothesis that EO exposure results in the accumulation of AP sites and induces changes in expression of genes for base excision DNA repair (BER). Male Fisher 344 rats were exposed to EO (100 ppm) or ET (40 or 3000 ppm) by inhalation for 1, 3 or 20 days (6h/day, 5 days a week). Animals were sacrificed 2h after exposure for 1, 3 or 20 days as well as 6, 24 and 72 h after a single-day exposure. Experiments were performed with tissues from brain and spleen, target sites for EO-induced carcinogenesis, and liver, a non-target organ. Exposure to EO resulted in time-dependent increases in N7-(2-hydroxyethyl)guanine (7-HEG) in brain, spleen, and liver and N7-(2-hydroxyethyl)valine (7-HEVal) in globin. Ethylene exposure also induced 7-HEG and 7-HEVal, but the numbers of adducts were much lower. No increase in the number of aldehydic DNA lesions, an indicator of AP sites, was detected in any of the tissues between controls and EO-, or ET-exposed animals, regardless of the duration or strength of exposure. EO exposure led to a 3-7-fold decrease in expression of 3-methyladenine-DNA glycosylase (Mpg) in brain and spleen in rats exposed to EO for 1 day. Expression of 8-oxoguanine DNA glycosylase, Mpg, AP endonuclease (Ape), polymerase beta (Pol beta) and alkylguanine methyltransferase were increased by 20-100% in livers of rats exposed to EO for 20 days. The only effects of ET on BER gene expression were observed in brain, where Ape and Pol beta expression were increased by less than 20% after 20 days of exposure to 3000 ppm. These data suggest that DNA damage induced by exposure to EO is repaired without accumulation of AP sites and is associated with biologically insignificant changes in BER gene expression in target organs. We conclude that accumulation of AP sites is not a likely primary mechanism for mutagenicity and carcinogenicity of EO.  相似文献   

4.
The two alkylating agents ethylene oxide (EO) and propylene oxide (PO) were compared for genotoxic effectiveness in various test systems. The study was undertaken partly to shed light on the difference between the compounds found after chronic exposure of monkeys (Lynch et al., 1984) where EO but not PO was able to induce SCE and chromosomal aberrations. In the present study EO was found to be 5–10 times more effective than PO with respect to gene conversion and reverse mutation in Saccharomyces cerevisiae D7 and sister-chromatid conversion in S. cerevisiae RS112. In contrast, the abilities of the two compounds to induce point mutation in S. typhimurium strains and SCE in human lymphocytes were approximately equal. One possible cause of EO being more effective than PO in certain respects, discussed on the basis of inference from earlier studies, is an expected difference in ability to cause strand breaks via alkylation of DNA-phosphate groups.  相似文献   

5.
DNA damage caused by oxygen alkylation of bases (mainly at O6-G, O4-T and O2-T positions in DNA) has been correlated with the mutagenic and carcinogenic potency of monofunctional alkylating agents. In all kinds of organisms, repair of O6-alkylG is carried out mainly by the enzyme O6-methyl guanine-DNA methyltransferase (MGMT). However, little is known about the repair of the O-alkylT adducts or about the contribution of nucleotide excision repair (NER) to this process, especially in higher eukaryotes. To study the influence of the NER system on the repair of O-alkylation damage, the molecular mutation spectrum induced by N-ethyl-N-nitrosourea (ENU) in an NER-deficient Drosophila strain, carrying a mutation at the mus201 locus, was obtained and compared with a previously published spectrum for NER-proficient conditions. This comparison reveals a clear increase in the frequency of base pair changes, including GC --> AT and AT --> GC transitions and AT --> TA transversions. In addition, one deletion and two frameshift mutations, not found under NER-proficient conditions, were isolated in the NER-deficient mutant. The results demonstrate that: (1) N-alkylation damage contributes considerably (more than 20%) to the mutagenic activity of ENU under NER-deficient conditions, confirming that the NER system repairs this kind of damage; and (2) that in germ cells of Drosophila in vivo, NER seems to repair O6-ethylguanine and/or O2-ethylcytosine, O4-ethylthymine, and possibly also O2-ethylthymine.  相似文献   

6.
The results from mutagenic and carcinogenic studies of propylene oxide (PO) and the current efforts to develop molecular dosimetry methods for PO–DNA adducts are reviewed. PO has been shown to be active in several bacterial and mammalian mutagenicity tests and induces site of contact tumors in rodents after long-term administration. Quantitation of N7-(2-hydroxypropyl)guanine (7-HPG) in nasal and hepatic tissues of male F344 rats exposed to 500 ppm PO (6 h/day; 5 days/week for 4 weeks) by inhalation was performed to evaluate the potential of high concentrations of PO to produce adducts in the DNA of rodent tissues and to obtain information necessary for the design of molecular dosimetry studies. The persistence of 7-HPG in nasal and hepatic tissues was studied in rats killed three days after cessation of a 4-week exposure period. DNA samples from exposed and untreated animals were analyzed for 7-HPG by two different methods. The first method consisted of separation of the adduct from DNA by neutral thermal hydrolysis, followed by electrophoretic derivatization of the adduct and gas chromatography-high resolution mass spectrometry (GC–HRMS) analysis. The second method utilized 32P-postlabeling to quantitate the amount of this adduct in rat tissues. Adducts present in tissues from rats killed immediately after cessation of exposure were 835.4±80.1 (respiratory), 396.8±53.1 (olfactory) and 34.6±3.0 (liver) pmol adduct/μmol guanine using GC–HRMS. Lower values, 592.7±53.3, 296.5±32.6 and 23.2±0.6 pmol adduct/μmol guanine were found in respiratory, olfactory and hepatic tissues of rats killed after three days of recovery. Analysis of the tissues by 32P-postlabeling yielded the following values: 445.7±8.0 (respiratory), 301.6±49.2 (olfactory) and 20.6±1.8 (liver) pmol adduct/μmol guanine in DNA of rats killed immediately after exposure cessation and 327.1±21.7 (respiratory), 185.3±29.2 (olfactory) and 15.7±0.9 (liver) pmol adduct/μmol guanine after recovery. Current methods of quantitation did not provide evidence for the endogenous formation of this adduct in control animals. These studies demonstrated that the target tissue for carcinogenesis has much greater alkylation of DNA than liver, a tissue that did not exhibit a carcinogenic response.  相似文献   

7.
Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions. This assay utilizes the principle that a DNA repair deficient cell line is expected to be affected in growth and/or survival more than a repair proficient cell. A significant induction of mutations by GA was detected in the hprt locus of wild-type cells but not in BER deficient cells. Cells deficient in HR or BER were three or five times, respectively, more sensitive to GA in terms of growth inhibition than were wild-type cells. The results obtained on the rate of incisions in BER and NER suggest that lesions induced by GA are repaired by short patch BER rather than long patch BER or NER. Furthermore, a large proportion of the GA-induced lesions gave rise to strand breaks that are repaired by a mechanism not involving PARP. It is suggested that these strand breaks, which might be the results from alkylation of the backbone phosphate, are misrepaired by HR during replication thereby leading to a clastogenic rather than a mutagenic pathway. The type of lesion responsible for the mutagenic effect of GA cannot be concluded from the results presented in this study.  相似文献   

8.
Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.  相似文献   

9.
Exposure to propylene oxide was determined previously by the degree of alkylation of hemoglobin measured on the histidine residue as N-3-(2-hydroxypropyl) histidine, using blood samples from 8 propylene oxide-exposed employees and 13 unexposed referents. Mononuclear leukocytes isolated from the same blood samples were used to quantify DNA repair proficiency following an in vitro challenge with the carcinogen, N-acetoxy-2-acetylamino-fluorene. Decreases in the DNA repair proficiency index correlated significantly to in vivo exposure levels to propylene oxide (r = –0.64, p <0.03). These data suggest a possible short-term biological assay for monitoring the in vivo genotoxic effects of propylene oxide exposure in the human population.Abbreviations EO ethylene oxide - NA-AAF N-acetoxy-2-acetylaminofluorene - HOPrHIS N-3-(2-hydroxypropyl) histidine - PO propylene oxide - UDS unscheduled DNA synthesis  相似文献   

10.
Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions. This assay utilizes the principle that a DNA repair deficient cell line is expected to be affected in growth and/or survival more than a repair proficient cell.A significant induction of mutations by GA was detected in the hprt locus of wild-type cells but not in BER deficient cells. Cells deficient in HR or BER were three or five times, respectively, more sensitive to GA in terms of growth inhibition than were wild-type cells. The results obtained on the rate of incisions in BER and NER suggest that lesions induced by GA are repaired by short patch BER rather than long patch BER or NER. Furthermore, a large proportion of the GA-induced lesions gave rise to strand breaks that are repaired by a mechanism not involving PARP. It is suggested that these strand breaks, which might be the results from alkylation of the backbone phosphate, are misrepaired by HR during replication thereby leading to a clastogenic rather than a mutagenic pathway. The type of lesion responsible for the mutagenic effect of GA cannot be concluded from the results presented in this study.  相似文献   

11.
12.
Young adult male Lewis rats were exposed to ethylene oxide (EO) via single intraperitoneal (i.p.) injections (10-80 mg kg-1) or drinking water (4 weeks at concentrations of 2, 5, and 10 mM) or inhalation (50, 100 or 200 ppm for 4 weeks, 5 days week-1, 6 h day-1) to measure induction of HPRT mutations in lymphocytes from spleen by means of a cloning assay. N-ethyl-N-nitrosourea (ENU) and N-(2-hydroxyethyl)-N-nitrosourea (HOENU) were used as positive controls. Levels of N-(2-hydroxyethyl)valine (HOEtVal) adducts in haemoglobin (expressed in nmol g-1 globin) were measured to determine blood doses of EO (mmol kg-1 h, mM h). Blood doses were used as a common denominator for comparison of mutagenic effects of EO administered via the three routes. The mean HPRT mutant frequency (MF) of the historical control was 4.3 x 10(-6). Maximal mean MFs for ENU (100 mg kg-1) and HOENU (75 mg kg-1) were 243 x 10(-6) and 93 x 10(-6), respectively. In two independent experiments, EO injections led to a statistically significant dose-dependent induction of mutations, with a maximal increase in MF by 2.3-fold over the background. Administration of EO via drinking water gave statistically significant increases of MFs in two independent experiments. Effects were, at most, 2.5-fold above the concurrent control. Finally, inhalation exposure also caused a statistically significant maximal increase in MF by 1.4-fold over the background. Plotting of mutagenicity data (i.e., selected data pertaining to expression times where maximal mutagenic effects were found) for the three exposure routes against blood dose as common denominator indicated that, at equal blood doses, acute i.p. exposure led to higher observed MFs than drinking water treatment, which was more mutagenic than exposure via inhalation. In the injection experiments, there was evidence for a saturation of detoxification processes at the highest doses. This was not seen after subchronic administration of EO. The resulting HPRT mutagenicity data suggest that EO is a relatively weak mutagen in T-lymphocytes of rats following exposure(s) by i.p. injection, in drinking water or by inhalation.  相似文献   

13.
Ethylene oxide (EO) is a direct-acting SN2 alkylating agent and a rodent and probable human carcinogen. In vitro reactions of EO with calf thymus DNA in aqueous solution at neutral pH and 37 degrees C for 10 h resulted in the following 2-hydroxyethyl (HE) adducts (nmol/mg DNA): 7-HE-Gua (330), 3-HE-Ade (39), 1-HE-Ade (28), N6-HE-dAdo (6.2), 3-HE-Cyt (3.1), 3-HE-Ura (0.8) and 3-HE-dThd (2.0). Reference (marker) compounds were synthesized from reactions of EO with 2'-deoxyribonucleosides and DNA bases, isolated by paper and high performance liquid chromatography and characterized on the basis of chemical properties and UV, NMR and mass spectra. In agreement with our earlier studies with propylene oxide (PO) (Chem.-Biol. Interact., 67 (1988) 275-294) and glycidol (Cancer Biochem. Biophys., 11 (1990) 59-67), alkylation at N-3 of dCyd by EO under physiological conditions resulted in the rapid hydrolytic deamination of 3-HE-dCyd to 3-HE-dUrd. The hydroxyl group on the alkyl side chain which forms after epoxide alkylation is mechanistically involved in this rapid hydrolytic deamination. These results may provide important insights into the mechanisms of mutagenicity and carcinogenicity exhibited by EO and other SN2 aliphatic epoxides.  相似文献   

14.
Styrene 7,8-oxide (SO), a major metabolite of styrene, is classified as a probable human carcinogen. In the present work, salmon testis DNA was reacted with SO and the alkylation products were analysed after sequential depurination in neutral or acidic conditions followed by HPLC separation and UV-detection. A novel finding was that the N-3 position of adenine was the next most reactive alkylation site in double-stranded DNA, comprising 4% of the total alkylation, as compared to alkylation at the N-7 position of guanine, 93% of the total alkylation. Both alpha- and beta-products of SO were formed at these two sites. Other modified sites were N2-guanine (1.5%, alpha-isomer), 1-adenine (0.4%, both isomers) and N6-adenine (0.7%, both isomers) as well as 1-hypoxanthine (0.1%, alpha-isomer), formed by deamination of the corresponding 1-adenine adduct. The results indicated that in double-stranded DNA N-7 of guanine and N-3 of adenine account for 97% of alkylation by SO. However, these abundant adducts are not stable, the half-life of depurination in DNA for 3-substituted adenines being approximately 10 and approximately 20 h, for alpha- and beta-isomers, respectively, and 51 h for both isomers of 7-substituted guanines.  相似文献   

15.
The role of a defect for nucleotide excision repair (NER) in oocytes on the repair of DNA ethyl adducts induced by diethyl sulfate (DES) in male germ cells of Drosophila was analysed. Frequencies of mutations at multiple loci (recessive lethal mutations) and at the vermilion gene induced in NER+ conditions (cross NER+ x NER+) were compared with those fixed in a NER- background (NER- x NER+). The M(NER-)/M(NER+) mutability ratios for two DES concentrations, 10 mM and 15 mM, were 2.21 and 1.49, respectively, indicating that NER repairs part of the DES-induced damage. The majority of 28 fertile vermilion mutations produced by DES in NER- are transitions, both GC-AT (46.4%) and AT-GC (21.4%) transitions are found, the consequences of O6-ethylguanine and O4-ethylthymine, respectively. Transversions (21.5%), one +1 frameshift mutation (3.6%) and two deletions (7.1%) are most likely the result of N-alkylation damage. Furthermore, the DES-induced mutation spectra show interesting differences in relation to the exposure dose. All 10 mutants isolated in this and a previous [L.M. Sierra, A. Pastink, M.J.M. Nivard, E.W. Vogel, DNA base sequence changes induced by DES in postmeiotic male germ cells of Drosophila melanogaster, Mol. Gen. Genet. 237 (1993) 370-374] study from experiments with low DES-effectiveness are exclusively transitions, independent whether the females were of the NER+ or NER-genotype. This indicates that at lower DES effectiveness only O-alkylation damage is relevant, and that N-alkylation damage is repaired. In experiments revealing high DES-effectiveness, vermilion mutations representing N-alkylation damage reached 43% (9/21) with NER- and 26% (7/27) with NER+ females, suggesting (i) that NER becomes involved at high adduct levels because then the base excision repair (BER) may be saturated, and (ii) that this involvement of NER causes the relative decrease from 43% to 26% N-alkylation mediated sequence changes.  相似文献   

16.
The relative importance of different sites of alkylation on DNA was determined by comparing two ethylating agents. 1-Ethyl-1-nitrosourea (ENU) ethylates DNA with a higher proportion of total adducts on ring oxygens than ethyl methanesulfonate, which ethylates with a higher proportion of total adducts on the N-7 of guanine. Research with somatic cells in culture and prokaryotes strongly suggests that O6-guanine (O6-G) is the principal genotoxic site. To determine the importance in germ-line mutagenesis of the O6-G site relative to the N-7 of guanine, dose-response curves were constructed for both ENU and EMS, where dose was measured as total adducts per deoxynucleotide (APdN) and response as sex-linked recessive lethals (SLRL) induced in Drosophila melanogaster spermatozoa. For both mutagens the dose response curve was linear and extrapolated to the origin. The dose-response curve for ENU was fit to an equation m = 6.2D, and the dose response curve for EMS, from this and previous experiments, was m = 3.2D where m = %SLRL and D = APdN X 10(-3). Therefore, ENU is 1.9 times more efficient per adduct in inducing SLRL mutations than EMS. In vitro studies showed that ENU induced 9.5% of its total adducts on O6-G while EMS induced 2.0% of its adducts on O6-G. If O6-G was the sole genotoxic site, then ENU should be 4.8 times more efficient per adduct than EMS. In contrast, if N-7 G was the sole genotoxic site, ENU would be only 0.19 as effective as EMS. It was concluded that while O6-G was the principal genotoxic site, N-7 G made a significant contribution to germ-line mutagenesis.  相似文献   

17.
The results of efforts to identify and quantify macromolecular adducts of ethylene oxide (ETO), to determine the source and significance of background levels of these adducts, and to generate molecular dosimetry data on these adducts are reviewed. A time-course study was conducted to investigate the formation and persistence of 7-(2-hydroxyethyl)guanine (7-HEG; Fig. 1) in various tissues of rats exposed to ETO by inhalation, providing information necessary for designing investigations on the molecular dosimetry of adducts of ETO. Male F344 rats were exposed 6 h/day for up to 4 weeks (5 days/wk) to 300 ppm ETO by inhalation. Another set of rats was exposed for 4 weeks to 300 ppm ETO, and then killed 1–10 days after cessation of exposures. DNA samples from control and treated rats were analyzed for 7-HEG using neutral thermal hydrolysis, HPLC separation, and fluorescence detection. The adduct was detectable in all tissues of treated rats following 1 day of ETO exposure and increased approximately linearly for 3–5 days before the rate of increase began to level off. Concentrations of 7-HEG were greatest in brain, but the extent of formation was similar in all tissues studied. The adduct disappeared slowly from DNA, with an apparent half-life approx. 7 days. The shape of the formation curve and the in vivo half-life indicate that 7-HEG will approach steady-state concentrations in rat DNA by 28 days of ETO exposure. The similarity in 7-HEG formation in target and nontarget tissues indicates that the tissue specificity for tumor induction is due to factors in addition to DNA-adduct formation.  相似文献   

18.
A comparison of the mutagenic efficiency and effectiveness of ethyl methanesulphonate (EMS) and ethylene oxide (EO) on two different genotypes of rice showed that the mutagenic efficiency sharply decreased with increase in the concentration of EO whereas the efficiency of EMS increased with an increase in the concentration. The effectiveness was inversely proportional to dose of EO whereas it varied little with an increased dose of EMS.  相似文献   

19.
The mutagenic and lethal effects of a monofunctional sulfur mustard, 2-chloro-ethylethylsulfide (CEES), have been studied in a number of repair deficient variants of Escherichia coli K12, B/r and B. The results indicate that CEES induces a (pre)mutational lesion which is subject to Uvr+-excision-repair. Extensive CEES-induced mutagenesis can occur in exrA- uvrA- and recA- uvrB- variants suggesting that the majority of the mutations in Uvr-bacteria do not arise from error-prone repair. These findings are similar to results previously reported with a volatile degradation product of captan and with ethyl methanesulfonate (EMS) but differ from those reported with methyl methanesulfonate (MMS). It is hypothesized that CEES alkylates guanine at the O-6 position (R-O-6-G) and that this R-O-6-G which is Uvr+-excisable is directly mutagenic by producing G-C to A-T transitions during replication. Reduced levels of induced mutation frequencies observed in an endonuclease II-deficient variant lead us to postulate that, in constrast to Uvr- bacteria, CEES-induced mutation in wild-type cells arise from error-prone repair of apurinic sites. Analysis of the lethal actions of CEES indicates that the lesion produced is largely unexcisable by the Uvr+ system. Host-cell reactivation of CEES-treated TI bacteriophage shows that the production of the (pre)ethal lesion is dependent on both the initial dose and post-treatment incubation. The efficient repair of the (pre)ethal lesion requires both endonuclease II and polymerase I. Moreover, deficiencies of these two enzymes rendered bacteria more sensitive to the cytotoxic action of CEES. It is postulated that the lethal mechanism of CEES involves: (I) alkylation at the N-3 position of adenine and the N-7 position of guanine; (2) spontaneous depurination of these alkylated bases; and (3) production of apurinic sites which are lethal unless repaired by the endonuclease II-polymerase I excision-repair system.  相似文献   

20.
The nature of DNA sequence changes induced by the cross-linking agent hexamethylphosphoramide (HMPA) within and in the vicinity of the vermilion locus of Drosophila melanogaster that produce a vermilion mutant phenotype was analyzed after exposure of postmeiotic male germ cells. Mutagenized males were mated to either females wild-type (exr(+)) for nucleotide excision repair (NER) or to females having a deficiency (exr(-)) for NER. Rearrangements, mostly deletions, represented by far the most frequent type of mutational events induced by HMPA that are detected as vermilion mutations. In the exr(+) group, all but one (a double substitution) of 21 mutants characterized were large sequence changes: we found 5 intra-locus deletions, 3 intra-locus deletions associated with insertions and 12 multi-locus deletions. When taken together, deletions and deletion/insertion mutations represent 96% of the HMPA-induced DNA modifications obtained under proficient repair conditions. Of the 10 mutants obtained from crosses with exr(-) females, 6 intra-locus and 2 multi-locus deletions were found, as opposed to just 1 point mutation and 1 double substitution. The ``hypomutability effect' observed with exr(-) genotypes in relation to the wild type seems to be caused by a decrease in the frequency of multi-locus deletions in the former group. The results suggest that the NER system is involved in the generation of multi-locus deletions, whereas intra-locus deletions appear to be formed through a postreplication slipped-misrepair pathway. It is concluded that an eukaryotic in vivo system with no limitations for the recovery of multi-locus deletions, such as vermilion, should be used for the analysis of DNA damage induced by cross-linking agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号