首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In higher eukaryotes, 14-3-3 proteins participate in numerous cellular processes, and carry out their function through a variety of different molecular mechanisms, including regulation of protein localization and enzyme activation. Here, it is shown that the two yeast 14-3-3 homologues, Bmh1p and Bmh2p, form a complex with neutral trehalase (Nth1p), an enzyme that is responsible for trehalose degradation and is required in a variety of stress conditions. In a purified in vitro system, either one of the two 14-3-3 yeast isoforms are necessary for complete activation of neutral trehalase (Nth1p) after phosphorylation by PKA. It is further demonstrated that Bmh1p and Bmh2p bind to the amino-terminal region of phosphorylated trehalase, thereby modulating its enzymatic activity. This work represents the first demonstration of enzyme activation mediated by 14-3-3 binding in yeast.  相似文献   

2.
3.
Mayordomo I  Regelmann J  Horak J  Sanz P 《FEBS letters》2003,544(1-3):160-164
In this study we show that Reg1, the regulatory subunit of the Reg1/Glc7 protein phosphatase (PP1) complex, interacts physically with the two yeast members of the 14-3-3 protein family, Bmh1 and Bmh2. By using different fragments of the Reg1 protein we mapped the interaction domain at the N-terminal part of the protein. We also show that Reg1 and yeast 14-3-3 proteins participate actively in the regulation of the glucose-induced degradation of maltose permease (Mal61).  相似文献   

4.
14-3-3 Proteins are thought to function as adapters in signaling complexes [1,2], thereby participating in cellular processes including vesicle trafficking and exocytosis [3,4]. To delineate further the function of 14-3-3 proteins during vesicle trafficking, we generated dominant-negative alleles of the two 14-3-3 homologues, Bmh1p and Bmh2p, in budding yeast and analyzed their phenotype in respect to exocytosis. Cells overexpressing the carboxy-terminal region of Bmh2p failed to polarize vesicular transport although bulk exocytosis remained unaffected and showed a disrupted actin cytoskeleton. Our data suggest that 14-3-3 proteins may act primarily on the actin cytoskeleton to regulate vesicle targeting.  相似文献   

5.
6.
The Fin1 protein of the yeast Saccharomyces cerevisiae forms filaments between the spindle pole bodies of dividing cells. In the two-hybrid system it binds to 14-3-3 proteins, which are highly conserved proteins involved in many cellular processes and which are capable of binding to more than 120 different proteins. Here, we describe the interaction of the Fin1 protein with the 14-3-3 proteins Bmh1p and Bmh2p in more detail. Purified Fin1p interacts with recombinant yeast 14-3-3 proteins. This interaction is strongly reduced after dephosphorylation of Fin1p. Surface plasmon resonance analysis showed that Fin1p has a higher affinity for Bmh2p than for Bmh1p (K(D) 289 versus 585 nm). Sequences in both the central and C-terminal part of Fin1p are required for the interaction with Bmh2p in the two-hybrid system. In yeast strains lacking 14-3-3 proteins Fin1 filament formation was observed, indicating that the 14-3-3 proteins are not required for this process. Fin1 also interacts with itself in the two-hybrid system. For this interaction sequences at the C terminus, containing one of two putative coiled-coil regions, are sufficient. Fin1p-Fin1p interactions were demonstrated in vivo by fluorescent resonance energy transfer between cyan fluorescent protein-labeled Fin1p and yellow fluorescent protein-labeled Fin1p.  相似文献   

7.
8.
The review considers the current views of the yeast signaling system that connects mitochondria with the nucleus and is known as retrograde regulation. The adaptive character of this signaling system is emphasized. The system is activated upon damage to mitochondrial functions (e.g., by stress or mutations) and is aimed at adapting the cell to the changed functional state of the organelles. The retrograde signaling system is controlled by positive (Rtg1p, Rtg2p, Rtg3p, and Grr1p) and negative (Mks1p, Lst8p, Bmh1p, and Bmh2p) regulatory factors. The possibility of several retrograde pathways existing in mitochondria is discussed in brief. Data on some functions of retrograde regulation are described.  相似文献   

9.
Yak1 is a member of an evolutionarily conserved family of Ser/Thr protein kinases known as dual-specificity Tyr phosphorylation-regulated kinases (DYRKs). Yak1 was originally identified as a growth antagonist, which functions downstream of Ras/PKA signalling pathway. It has been known that Yak1 is phosphorylated by PKA in vitro and is translocated to the nucleus upon nutrient deprivation. However, the regulatory mechanisms for Yak1 activity and localization are largely unknown. In the present study, we investigated the role of PKA and Bmh1, a yeast 14-3-3 protein, in regulation of Yak1. We demonstrate that PKA-dependent phosphorylation of Yak1 on Ser295 and two minor sites inhibits nuclear localization of Yak1. We also show that intramolecular autophosphorylation on at least four Ser/Thr residues in the non-catalytic N-terminal domain is required for full kinase activity of Yak1. The most potent autophosphorylation site, Thr335, plays an essential role for Bmh1 binding in collaboration with a yet unidentified second binding site in the N-terminal domain. Bmh1 binding decreases the catalytic activity of Yak1 without affecting its subcellular localization. Since the binding of 14-3-3 proteins to Yak1 coincides with PKA activity, such regulatory mechanisms might allow cytoplasmic retention of an inactive form of Yak1 under high glucose conditions.  相似文献   

10.
11.
Expression of human Bax, a cardinal regulator of mitochondrial membrane permeabilization, causes death in yeast. We screened a human cDNA library for suppressors of Bax-mediated yeast death and identified human 14-3-3β/α, a protein whose paralogs have numerous chaperone-like functions. Here, we show that, yeast cells expressing human 14-3-3β/α are able to complement deletion of the endogenous yeast 14-3-3 and confer resistance to a variety of different stresses including cadmium and cycloheximide. The expression of 14-3-3β/α also conferred resistance to death induced by the target of rapamycin inhibitor rapamycin and by starvation for the amino acid leucine, conditions that induce autophagy. Cell death in response to these autophagic stimuli was also observed in the macroautophagic-deficient atg1Δ and atg7Δ mutants. Furthermore, 14-3-3β/α retained its ability to protect against the autophagic stimuli in these autophagic-deficient mutants arguing against so called ‘autophagic death''. In line, analysis of cell death markers including the accumulation of reactive oxygen species, membrane integrity and cell surface exposure of phosphatidylserine indicated that 14-3-3β/α serves as a specific inhibitor of apoptosis. Finally, we demonstrate functional conservation of these phenotypes using the yeast homolog of 14-3-3: Bmh1. In sum, cell death in response to multiple stresses can be counteracted by 14-3-3 proteins.  相似文献   

12.

Background

Trehalases are highly conserved enzymes catalyzing the hydrolysis of trehalose in a wide range of organisms. The activity of yeast neutral trehalase Nth1 is regulated in a 14-3-3- and a calcium-dependent manner. The Bmh proteins (the yeast 14-3-3 isoforms) recognize phosphorylated Nth1 and enhance its enzymatic activity through an unknown mechanism.

Methods

To investigate the structural basis of interaction between Nth1 and Bmh1, we used hydrogen/deuterium exchange coupled to mass spectrometry, circular dichroism spectroscopy and homology modeling to identify structural changes occurring upon the complex formation.

Results

Our results show that the Bmh1 protein binding affects structural properties of several regions of phosphorylated Nth1: the N-terminal segment containing phosphorylation sites responsible for Nth1 binding to Bmh, the region containing the calcium binding domain, and segments surrounding the active site of the catalytic trehalase domain. The complex formation between Bmh1 and phosphorylated Nth1, however, is not accompanied by the change in the secondary structure composition but rather the change in the tertiary structure.

Conclusions

The 14-3-3 protein-dependent activation of Nth1 is based on the structural change of both the calcium binding domain and the catalytic trehalase domain. These changes likely increase the accessibility of the active site, thus resulting in Nth1 activation.

General significance

The results presented here provide a structural view of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1, which might be relevant to understand the process of Nth1 activity regulation as well as the role of the 14-3-3 proteins in the regulation of other enzymes.  相似文献   

13.
Na+/H+ antiporters are involved in ensuring optimal intracellular concentrations of alkali-metal cations and protons in most organisms. In Saccharomyces cerevisiae, the plasma-membrane Na+, K+/H+ antiporter Nha1 mediates Na+ and K+ efflux, which is important for cell growth in the presence of salts. Nha1 belongs among housekeeping proteins and, due to its ability to export K+, it has many physiological functions. The Nha1 transport activity is regulated through its long, hydrophilic and unstructured C-terminus (554 of 985 aa). Although Nha1 has been previously shown to interact with the yeast 14-3-3 isoform (Bmh2), the binding site remains unknown. In this work, we identified the residues through which Nha1 interacts with the 14-3-3 protein. Biophysical characterization of the interaction between the C-terminal polypeptide of Nha1 and Bmh proteins in vitro revealed that the 14-3-3 protein binds to phosphorylated Ser481 of Nha1, and the crystal structure of the phosphopeptide containing Ser481 bound to Bmh1 provided the structural basis of this interaction. Our data indicate that 14-3-3 binding induces a disorder-to-order transition of the C-terminus of Nha1, and in vivo experiments showed that the mutation of Ser481 to Ala significantly increases cation efflux activity via Nha1, which renders cells sensitive to low K+ concentrations. Hence, 14-3-3 binding is apparently essential for the negative regulation of Nha1 activity, which should be low under standard growth conditions, when low amounts of toxic salts are present and yeast cells need to accumulate high amounts of K+.  相似文献   

14.
Arginine (Arg)-based endoplasmic reticulum (ER) localization signals are sorting motifs involved in the quality control of multimeric membrane proteins. They are distinct from other ER localization signals like the C-terminal di-lysine [-K(X)KXX] signal. The Pmp2p isoproteolipid, a type I yeast membrane protein, reports faithfully on the activity of sorting signals when fused to a tail containing either an Arg-based motif or a -KKXX signal. This reporter reveals that the Arg-based ER localization signals from mammalian Kir6.2 and GB1 proteins are functional in yeast. Thus, the machinery involved in recognition of Arg-based signals is evolutionarily conserved. Multimeric presentation of the Arg-based signal from Kir6.2 on Pmp2p results in forward transport, which requires 14-3-3 proteins encoded in yeast by BMH1 and BMH2 in two isoforms. Comparison of a strain without any 14-3-3 proteins (Deltabmh2) and the individual Deltabmh1 or Deltabmh2 shows that the role of 14-3-3 in the trafficking of this multimeric Pmp2p reporter is isoform-specific. Efficient forward transport requires the presence of Bmh1p. The specific role of Bmh1p is not due to differences in abundance or affinity between the isoforms. Our results imply that 14-3-3 proteins mediate forward transport by a mechanism distinct from simple masking of the Arg-based signal.  相似文献   

15.
The yeast phosphatidylinositol 4-kinase Pik1p is essential for proliferation, and it controls Golgi homeostasis and transport of newly synthesized proteins from this compartment. At the Golgi, phosphatidylinositol 4-phosphate recruits multiple cytosolic effectors involved in formation of post-Golgi transport vesicles. A second pool of catalytically active Pik1p localizes to the nucleus. The physiological significance and regulation of this dual localization of the lipid kinase remains unknown. Here, we show that Pik1p binds to the redundant 14-3-3 proteins Bmh1p and Bmh2p. We provide evidence that nucleocytoplasmic shuttling of Pik1p involves phosphorylation and that 14-3-3 proteins bind Pik1p in the cytoplasm. Nutrient deprivation results in relocation of Pik1p from the Golgi to the nucleus and increases the amount of Pik1p-14-3-3 complex, a process reversed upon restored nutrient supply. These data suggest a role of Pik1p nucleocytoplasmic shuttling in coordination of biosynthetic transport from the Golgi with nutrient signaling.  相似文献   

16.
17.
Trehalases are important highly conserved enzymes found in a wide variety of organisms and are responsible for the hydrolysis of trehalose that serves as a carbon and energy source as well as a universal stress protectant. Emerging evidence indicates that the enzymatic activity of the neutral trehalase Nth1 in yeast is enhanced by 14-3-3 protein binding in a phosphorylation-dependent manner through an unknown mechanism. In the present study, we investigated in detail the interaction between Saccharomyces cerevisiae Nth1 and 14-3-3 protein isoforms Bmh1 and Bmh2. We determined four residues that are phosphorylated by PKA (protein kinase A) in vitro within the disordered N-terminal segment of Nth1. Sedimentation analysis and enzyme kinetics measurements show that both yeast 14-3-3 isoforms form a stable complex with phosphorylated Nth1 and significantly enhance its enzymatic activity. The 14-3-3-dependent activation of Nth1 is significantly more potent compared with Ca2+-dependent activation. Limited proteolysis confirmed that the 14-3-3 proteins interact with the N-terminal segment of Nth1 where all phosphorylation sites are located. Site-directed mutagenesis in conjunction with the enzyme activity measurements in vitro and the activation studies of mutant forms in vivo suggest that Ser60 and Ser83 are sites primarily responsible for PKA-dependent and 14-3-3-mediated activation of Nth1.  相似文献   

18.
14-3-3 proteins are a family of highly conserved polypeptides that function as small adaptors that facilitate a diverse array of cellular processes by binding phosphorylated target proteins. One of these processes is the regulation of the cell cycle. Here we characterized the role of Bmh1, a 14-3-3 protein, in the cell cycle regulation of the fungus Ustilago maydis. We found that this protein is essential in U. maydis and that it has roles during the G2/M transition in this organism. The function of 14-3-3 in U. maydis seems to mirror the proposed role for this protein during Schizosaccharomyces pombe cell cycle regulation. We provided evidence that in U. maydis 14-3-3 protein binds to the mitotic regulator Cdc25. Comparison of the roles of 14-3-3 during cell cycle regulation in other fungal system let us to discuss the connections between morphogenesis, cell cycle regulation and the evolutionary role of 14-3-3 proteins in fungi.  相似文献   

19.
Mitochondria perform many essential functions in eukaryotic cells. Being the main producers of ATP and the site of many catabolic and anabolic reactions, they participate in intracellular signaling, proliferation, aging, and formation of reactive oxygen species. Mitochondrial dysfunction is the cause of many diseases and even cell death. The functioning of mitochondria in vivo is impossible without interaction with other cellular compartments. Mitochondrial retrograde signaling is a signaling pathway connecting mitochondria and the nucleus. The major signal transducers in the yeast retrograde response are Rtg1p, Rtg2p, and Rtg3p proteins, as well as four additional negative regulatory factors–Mks1p, Lst8p, and two 14-3-3 proteins (Bmh1/2p). In this review, we analyze current information on the retrograde signaling in yeast that is regarded as a stress or homeostatic response mechanism to changes in various metabolic and biosynthetic activities that occur upon mitochondrial dysfunction. We also discuss relations between retrograde signaling and other signaling pathways in the cell.  相似文献   

20.
Thirty years ago, it was discovered that 14-3-3 proteins could activate enzymes involved in amino acid metabolism. In the following decades, 14-3-3s have been shown to be involved in many different signaling pathways that modulate cellular and whole body energy and nutrient homeostasis. Large scale screening for cellular binding partners of 14-3-3 has identified numerous proteins that participate in regulation of metabolic pathways, although only a minority of these targets have yet been subject to detailed studies. Because of the wide distribution of potential 14-3-3 targets and the resurging interest in metabolic pathway control in diseases like cancer, diabetes, obesity and cardiovascular disease, we review the role of 14-3-3 proteins in the regulation of core and specialized cellular metabolic functions. We cite illustrative examples of 14-3-3 action through their direct modulation of individual enzymes and through regulation of master switches in cellular pathways, such as insulin signaling, mTOR- and AMP dependent kinase signaling pathways, as well as regulation of autophagy. We further illustrate the quantitative impact of 14-3-3 association on signal response at the target protein level and we discuss implications of recent findings showing 14-3-3 protein membrane binding of target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号