首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Ca2+-dependent protease I), which hydrolyzes casein at Ca2+ concentrations lower than the 10(-5) M range, is purified roughly 4000-fold from the soluble fraction of rat brain. This protease is able to activate Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) by limited proteolysis analogously to the previously known Ca2+-dependent analogously to the previously known Ca2+-dependent protease (Ca2+ protease II) which is active at the millimolar range of Ca2+ (Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616). The protein kinase fragment thus produced shows a molecular weight of about 5.1 X 10(4), and is significantly smaller than native protein kinase C (Mr = 7.7 X 10(4). Although protein kinase C may be normally activated in a reversible manner by the simultaneous presence of phospholipid and diacylglycerol at Ca2+ concentrations less than 10(-6) M, this enzyme fragment is fully active without any lipid fractions and independent of Ca2+. The limited proteolysis of protein kinase C is markedly enhanced in the velocity by the addition of phospholipid and diacylglycerol, which are both required for the reversible activation of the enzyme. However, casein hydrolysis by this protease is not affected by phospholipid and diacylglycerol. Available evidence suggests that, at lower concentrations of this divalent cation, Ca2+ protease I reacts preferentially with the active form of protein kinase C which is associated with membrane, and converts it to the permanently active form. In contrast, the inactive form of protein kinase C, which is free of membrane phospholipid, does not appear to be very susceptible to the proteolytic attack. It remains unknown, however, whether this mechanism of irreversible activation of protein kinase C does operate in physiological processes. It is noted that Ca2+ protease II, which is active at higher concentrations of Ca2+, proteolytically activates protein kinase C irrespective of the presence and absence of phospholipid and diacylglycerol.  相似文献   

2.
3.
A synthetic peptide ArgThrProProProSerGly with sequence similar to the threonine sites of phosphorylation in both myelin basic protein and simian virus 40 T antigen could be phosphorylated in vitro by a purified rat brain Ca2+-activated and phospholipid-dependent protein kinase, protein kinase C. The apparent Km and Vm values of this heptapeptide for the enzyme were determined to be 240 microM and 60 nmol/min/mg, respectively. Up to 0.8 mol 32P could be incorporated into the peptide, mainly at the threonine residue. Substitution of the L-threonine residue in the heptapeptide by its D-enantiomer abolished the phosphorylatability of the peptide by protein kinase C. However, this (D)Thr-containing peptide could act as a competitive inhibitor for the kinase with an apparent Ki value of approximately 320 microM. These findings suggest that a triprolyl sequence may act as a recognition site for protein kinase C.  相似文献   

4.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was analyzed in cultured pituitary gonadotrophs during treatment with gonadotropin-releasing hormone (GnRH). In pituitary cells purified by centrifugal elutriation, the extent of protein kinase C redistribution during GnRH stimulation was correlated with the enrichment of gonadotrophs. GnRH-stimulated release of luteinizing hormone (LH) from gonadotroph-enriched cells was accompanied by a rapid and dose-dependent decrease in cytosolic protein kinase C and by a corresponding increase in protein kinase C activity in the particulate fraction. Retinal directly inhibited the activity of cytosolic protein kinase C and also attenuated the release of LH from GnRH-stimulated gonadotrophs. These findings, and the ability of GnRH to cause rapid translocation of cytosolic protein kinase C to a membrane-associated form, suggest that hormonal activation of protein kinase C is an intermediate step in the stimulation of pituitary LH secretion by GnRH.  相似文献   

5.
The effects of hydrophobic interaction on the activation of Ca2+-stimulated phospholipid-dependent protein kinase (protein kinase C), isolated from mouse brain, by phosphatidylserine (PS) and diacylglycerol (DAG) or phorbol 12-myristate 13-acetate were studied. To maintain bilayer structure during assay conditions, phosphatidylcholine was added to the PS vesicles. The vesicular structure of all types of PS was confirmed by freeze-fracture electron microscopy. The PS-dependent activation of purified protein kinase C from mouse brain is affected by the fatty acid composition of PS: an inverse relationship between the unsaturation index of PS (isolated from bovine heart, bovine spinal cord or bovine brain) and the ability to activate protein kinase C was demonstrated. In highly saturated PS lipid dispersions, only slight additional activation of protein kinase C by DAG was found, in contrast with highly unsaturated PS lipid dispersion, where DAG increased protein kinase C activity by 2-3-fold at optimal PS concentrations. We quantified the formation of the protein kinase C-Ca2+-PS-phorbol ester complex by using [3H]phorbol 12,13-dibutyrate [( 3H]PDBu). The efficiency of complex-formation, determined as the amount of [3H]PDBu bound, is not affected by variations in the hydrophobic part of PS. These results indicate a role of the hydrophobic part of the activating phospholipid in the activation mechanism of protein kinase C and in the action of cofactors.  相似文献   

6.
A stimulatory role for cGMP-dependent protein kinase in platelet activation   总被引:20,自引:0,他引:20  
Li Z  Xi X  Gu M  Feil R  Ye RD  Eigenthaler M  Hofmann F  Du X 《Cell》2003,112(1):77-86
It is currently accepted that cGMP-dependent protein kinase (PKG) inhibits platelet activation. Here, we show that PKG plays an important stimulatory role in platelet activation. Expression of recombinant PKG in a reconstituted cell model enhanced von Willebrand factor (vWF)-induced activation of the platelet integrin alpha(IIb)beta(3). PKG knockout mice showed impaired platelet responses to vWF or low doses of thrombin and prolonged bleeding time. Human platelet aggregation induced by vWF or low-dose thrombin was inhibited by PKG inhibitors but enhanced by cGMP. Furthermore, a cGMP-enhancing agent, sildenafil, promoted vWF- or thrombin-induced platelet aggregation. The cGMP-stimulated platelet responses are biphasic, consisting of an initial transient stimulatory response that promotes platelet aggregation and a subsequent inhibitory response that limits the size of thrombi.  相似文献   

7.
A small quantity of unsaturated diacylglycerol (DG) sharply decreased the Ca2+ and phospholipid concentrations needed for full activation of a Ca2+-activated, phospholipid-dependent multifunctional protein kinase described earlier (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T. and Nishizuka, Y. (1979)J.Biol.Chem.254. 3692–3695). In the presence of unsaturated DG and micromolar order of Ca2+, phosphatidylserine (PS) was most relevant with the capacity to activate the enzyme, whereas phosphatidylethanolamine and phosphatidylinositol (PI) were far less effective. Phosphatidylcholine was practically inactive. It is possible, therefore, that unsaturated DG, which may be derived from PI turnover provoked by various extracellular stimulators, acts as a messenger for activating the enzyme, and that Ca2+ and various phospholipids such as PI and PS seem to play a role cooperatively in this unique receptor mechanism.  相似文献   

8.
9.
The specificity of the fatty acyl moieties of diacylglycerol for the activation of Ca2+-activated, phospholipid-dependent protein kinase was investigated. Diacylglycerol has been previously shown to activate this enzyme by increasing the affinity for Ca2+ and phospholipid, both of which are indispensable for the enzyme activation. Diacylglycerols containing at least one unsaturated fatty acid at either position 1 or 2 are fully active in this capacity, irrespective of the chain length of the other fatty acyl moiety in the range tested, C2 to C18. Diacylglycerols containing two saturated fatty acids such as dipalmitin and distearin are far less effective. Mono- and triacylglycerols and free fatty acids are totally inactive, indicating that the diacylglycerol structure is essential.  相似文献   

10.
The calcium-activated, phospholipid-dependent protein kinase (C kinase) and its proteolytic product (M kinase), originally discovered in central nervous tissue (Takai, Y., Kishimoto, A., Inoue, M., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7603-7610) were characterized in bovine adrenal cortex cytosol. An endogenous calcium-dependent protease able to generate M kinase from the isolated C kinase in vitro was also present in adrenocortical extracts. Bovine adrenocortical cells in suspension as well as in primary culture contain the C and the M kinase activities. Treatment of these cells by steroidogenic concentrations (nM to microM) of ACTH resulted in a time and dose-dependent increase of cytosolic C kinase activity, whereas no change in M kinase activity was detected. This apparent activation appears to result mostly from an intracellular shift of the membrane-associated C kinase to a soluble cytosolic form of the enzyme. These observations open the question of the possible implication of the calcium, phospholipid-dependent protein phosphorylation system in hormone-dependent cellular regulatory processes.  相似文献   

11.
Cardiac sarcoplasmic reticulum is phosphorylated by a cytosolic Ca2+-activated, phospholipid-dependent protein kinase. This phosphorylation is independent of cyclic nucleotides and enhanced by unsaturated diacylglycerols; saturated diacylglycerols, mono- and tri-glycerides are ineffective. Diacylglycerol stimulation is due to increased Ca2+ sensitivity of the kinase reaction. Protein kinase catalyzed phosphorylation results in enhanced Ca2+-transport ATPase activity and may be an important determinant of cardiac sarcoplasmic reticulum function.  相似文献   

12.
Phosphorylation of clupeine sulfate by purified rat brain calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was studied. In the absence of Ca2+, phosphatidylserine and diolein markedly stimulated its phosphorylation. However Ca2+ did not stimulate but inhibit this phosphorylation about 30% in the presence of phospholipids. Random polymer (Arg, Ser) 3:1 and (Lys, Ser) 3:1 could be phosphorylated by protein kinase C. In the presence of phospholipids Ca2+ is not needed for the phosphorylation of polymer (Arg, Ser) 3:1, while Ca2+ is necessary for polymer (Lys, Ser) 3:1. Non-requirement of Ca2+ on clupeine phosphorylation by protein kinase C is briefly discussed.  相似文献   

13.
Ca2+-activated, phospholipid-dependent protein kinase recently found in mammalian tissues (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y. (1979) J.Biol.Chem.254, 3692–3695) is able to phosphorylate five fractions of calf thymus histone. H1 histone serves as a preferential substrate, and approximately two moles of phosphate are incorporated into every mole of this histone. Analysis on the N-bromosuccinimide-bisected fragments of this radioactive histone has revealed that the enzyme phosphorylates preferentially seryl and threonyl residues located in the carboxyl-terminal half of this histone molecule.  相似文献   

14.
The effect of phorbol esters on calcium-activated, phospholipid-dependent kinase (protein kinase C) and luteinizing hormone (LH) secretion was examined in cultured rat anterior pituitary cells. The potent tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) stimulated LH secretion and activated pituitary protein kinase C in the presence of calcium and phosphatidylserine. The enzyme activity present in cytosol and particulate fractions was eluted at about 0.05 M NaCl during DE52-cellulose chromatography. Preincubation of pituitary cells with TPA markedly decreased cytosolic protein kinase C activity and increased enzyme activity in the particulate fraction. The maximal TPA-induced change in enzyme activity, with a 76% decrease in cytosol and a 4.3-fold increase in the particulate fraction, occurred within 10 min. The dose-dependent changes in protein kinase C redistribution in TPA-treated cells were correlated with the stimulation of LH release by the phorbol ester. These results suggest that activation of protein kinase C by TPA is associated with intracellular redistribution of the enzyme and is related to the process of secretory granule release from gonadotrophs.  相似文献   

15.
Murine embryonic stem cells (ESCs) are pluripotent cells that differentiate into multiple cell lineages. It was recently observed that all-trans retinoic acid (RA) provides instructive signals for the commitment of the germ cell lineage from ESCs. However, little is known about the molecular mechanisms by which RA signals lead to germ cell commitment. In this study, we determined if RA induced ESC differentiation to the germ lineage through modulation of the (bone morphogenetic protein) BMP/Smad pathway activity. In a monolayer culture, RA significantly induced both the expression of the early germ-specific genes, Stra8, Dazl and Mvh, and prolonged activation of Smad1/5 (for at least 24h). Meanwhile, dorsomorphin (a BMP-Smad1/5 specific inhibitor) significantly reduced the RA-induced germ-specific gene expression and completely blocked the RA-induced activation of Smad1/5. Moreover, RA-induced germ-specific gene expression was significantly increased by treatment with the potential activator of Smad1/5, SB431542. Furthermore, the biochemical manipulation of Smad1/5 expression through shRNA knockdown significantly reduced RA-mediated up-regulation of germ-specific gene expression. Our results clearly demonstrate that the Smad1/5 pathway is specifically required at an early stage of germ cell differentiation, corresponding to the RA-dependent commitment of ESCs.  相似文献   

16.
Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) is able to catalyze the phosphorylation of phospholamban in a canine cardiac sarcoplasmic reticulum preparation. This phosphorylation is associated with a 2-fold stimulation of Ca2+ uptake by cardiac sarcoplasmic reticulum similar to that seen following phosphorylation of phospholamban by an endogenous calmodulin-dependent protein kinase or by the catalytic subunit of cAMP-dependent protein kinase. Two-dimensional peptide maps of the tryptic fragments of phospholamban indicate that the three protein kinases differ in their selectivity for sites of phosphorylation. However, one common peptide appears to be phosphorylated by all three protein kinases. These findings suggest that protein kinase C may play a role similar to those played by cAMP- and calmodulin-dependent protein kinases in the regulation of Ca2+ uptake by cardiac sarcoplasmic reticulum, and raise the possibility that the effects of all three protein kinases are mediated through phosphorylation of a common peptide in phospholamban.  相似文献   

17.
Thrombin stimulation of human platelets is associated with turnover of inositol phospholipids, mobilization of intracellular Ca2+ stores, and activation of protein kinase C. However, within 5 minutes, the thrombin receptor desensitizes, but can be re-coupled to its effectors by stimulation of alpha 2-adrenergic receptors (Crouch and Lapetina, J. Biol. Chem. 263, 3363-3371, 1988). This effect of epinephrine was found to be inhibited by preincubation of platelets with phorbol ester, suggesting that protein kinase C was inhibitory. However, since thrombin also activated protein kinase C and epinephrine was active following thrombin stimulation of platelets, this implied that thrombin activation of protein kinase C may have been spacially isolated near the thrombin receptor and could not inactivate alpha 2-receptor activity. In the present paper, we have tested this possibility, and we present evidence which strongly favours the possibility that protein kinase C activation by receptors induces its local translocation to the cell membrane.  相似文献   

18.
Evidence is presented that rat serosal mast cells and cells of the rat basophilic leukemia line, RBL-1, each contain a calcium-activated, phospholipid-dependent protein kinase. The enzymes are very similar in their activation requirements to the calcium-dependent enzymes termed protein kinase Cs in brain. The enzyme is selectively stimulated by diolein and phosphatidylserine and is inhibited by several local anesthetics. The Ka for Ca2+ is 1.0 X 10(-3) M and 1.5 X 10(-4) M in mast cells and RBL-1 cells, respectively. The enzyme in mast cells is rapidly activated and apparently changed in its intracellular distribution when intact mast cells are stimulated with 48/80, A-23187, and anti-IgE and 12-O-tetradecanoyl-13-acetate in combination.  相似文献   

19.
The new potent tumor promoters teleocidin and debromoaplysiatoxin , which are structurally unrelated to phorbol esters, activate Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C). The concentrations of 12-O-tetradecanoylphorbol-13-acetate, teleocidin and debromoaplysiatoxin for half-maximum activation of protein kinase C were found to be approximately 3 ng/ml, 40 ng/ml and 400 ng/ml, respectively. These three types of tumor promoters bind to protein kinase C, and appear to exhibit their pleiotropic actions through activation of this enzyme.  相似文献   

20.
Smooth muscle heavy meromyosin (HMM) can serve as a substrate for the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) as well as for the Ca2+/calmodulin-dependent kinase, myosin light chain kinase. When turkey gizzard HMM is incubated with protein kinase C, 1.7-2.2 mol of phosphate are incorporated per mol of HMM, all of it into the 20,000-Da light chain of HMM. Two-dimensional peptide mapping following tryptic hydrolysis revealed that protein kinase C phosphorylated a different site on the 20,000-Da HMM light chain than did myosin light chain kinase. Moreover, sequential phosphorylation of HMM by myosin light chain kinase and protein kinase C resulted in the incorporation of 4 mol of phosphate/mol of HMM, i.e. 2 mol of phosphate into each 20,000-Da light chain. When unphosphorylated HMM was phosphorylated by myosin light chain kinase, its actin-activated MgATPase activity increased from 4 nmol to 156 nmol of phosphate released/mg of HMM/min. Subsequent phosphorylation of this phosphorylated HMM by protein kinase C decreased the actin-activated MgATPase activity of HMM to 75 nmol of phosphate released/mg of HMM/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号