首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to develop a new delivery system capable of improving bioavailability and controlling release of hydrophilic drugs. Metformin-loaded liposomes were prepared and to improve their stability surface was coated with chitosan cross-linked with the biocompatible β-glycerolphosphate. X-ray diffraction, differential scanning calorimetry, as well as rheological analysis were performed to investigate interactions between chitosan and β-glycerolphosphate molecules. The entrapment of liposomes into the chitosan-β-glycerolphosphate network was assessed by scanning electron microscopy and transmission electron microscopy. Swelling and mucoadhesive properties as well as drug release were evaluated in vitro while the drug oral bioavailability was evaluated in vivo on Wistar rats. Results clearly showed that, compared to control, the proposed microcomplexes led to a 2.5-fold increase of metformin T max with a 40% augmentation of the AUC/D value.  相似文献   

2.
Perinatal hypoxia–ischemia (H/I) causes brain injury and myelination damage. Finding efficient methods to restore myelination is critical for the recovery of brain impairments. By applying an H/I rat model, we demonstrate that metformin (Met) treatment significantly ameliorates the loss of locomotor activity and cognition of H/I rat in the Morris water maze and open field task tests. After administration of Met to H/I rat, the proliferation of Olig2+ oligodendrocyte progenitor cells and the expression of myelin basic protein are obviously increased in the corpus callosum. Additionally, the myelin sheaths are more compact and the impairments are evidently attenuated. These data indicate that Met is beneficial for the amelioration of H/I-induced myelination and behavior deficits.  相似文献   

3.
  1. Download : Download high-res image (142KB)
  2. Download : Download full-size image
  相似文献   

4.
Traumatic brain injury (TBI) and stroke lead to elevated levels of glutamate in the brain that negatively affect the neurological outcomes in both animals and humans. Intravenous administration of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) enzymes can be used to lower the blood glutamate levels and to improve the neurological outcome following TBI and stroke. The objective of this study was to analyze the pharmacokinetics and to determine the glutamate-lowering effects of GOT and GPT enzymes in na?ve rats. We determined the time course of serum GOT, GPT, and glutamate levels following a single intravenous administration of two different doses of each one of the studied enzymes. Forty-six male rats were randomly assigned into one of 5 treatment groups: saline (control), human GOT at dose 0.03 and 0.06?mg/kg and porcine GPT at dose 0.6 and 1.2?mg/kg. Blood samples were collected at baseline, 5?min, and 2, 4, 8, 12, and 24?h after the drug injection and GOT, GPT and glutamate levels were determined. The pharmacokinetics of both GOT and GPT followed one-compartment model, and both enzymes exhibited substantial glutamate-lowering effects following intravenous administration. Analysis of the pharmacokinetic data indicated that both enzymes were distributed predominantly in the blood (central circulation) and did not permeate to the peripheral organs and tissues. Several-hour delay was present between the time course of the enzyme levels and the glutamate-lowering effects (leading to clock-wise hysteresis on concentration-effect curves), apparently due to the time that is required to affect the pool of serum glutamate. We conclude that the interaction between the systemically-administered enzymes (GOT and GPT) and the glutamate takes place in the central circulation. Thus, glutamate-lowering effects of GOT and GPT apparently lead to redistribution of the excess glutamate from the brain's extracellular fluid into the blood and can reduce secondary brain injury due to glutamate neurotoxicity. The outcomes of this study regarding the pharmacokinetic and pharmacodynamic properties of the GOT and GPT enzymes will be subsequently verified in clinical studies that can lead to design of effective neuroprotective treatment strategies in patients with traumatic brain diseases and stroke.  相似文献   

5.
Monochlorobimane (MCB) is often used to visualize glutathione (GSH) levels in cultured cells, since it is quickly converted to a fluorescent GSH conjugate (GS–MCB). To test for consequences of MCB application on the GSH metabolism of astrocytes, we have studied rat astrocyte-rich primary cultures as model system. MCB caused a concentration dependent rapid decrease in the cellular GSH content. Simultaneously, a transient accumulation of GS–MCB in the cells was observed with a maximal content 5 min after MCB application. The cellular accumulation was followed by a rapid release of GS–MCB into the medium with a maximal initial export rate of 27.9 ± 6.5 nmol h−1 mg protein−1. Transporters of the family of multidrug resistance proteins (Mrps) are likely to be involved in this export, since the Mrp inhibitor MK571 lowered the export rate by 60%. These data demonstrate that, due to its rapid export from astrocytes, GS–MCB is only under well-defined conditions a reliable indicator of the cellular GSH concentration and that MK571 can be used to maintain maximal GS–MCB levels in astrocytes.  相似文献   

6.
The fusion protein formed from ch14.18 and interleukin-2 (ch14.18-IL-2), shown to exhibit antitumor efficacy in mouse models, consists of IL-2 genetically linked to each heavy chain of the ch14.18 chimeric anti-GD2 monoclonal antibody. The purpose of this study was to determine the pharmacokinetics of ch14.18-IL-2 in mice and assess its stability in murine serum. Following i.v. injection, the fusion protein was found to have a terminal half-life of 4.1 h. Detection of IL-2 following injection of the ch14.18-IL-2 fusion protein showed a similar half-life, indicating that the fusion protein prolongs the circulatory half-life of IL-2. Detection of human IgG1 following injection of ch14.18-IL-2 showed a terminal half-life of 26.9 h. These data suggested that the native fusion protein is being altered in vivo, resulting in a somewhat rapid loss of detectable IL-2, despite prolonged circulation of its immunoglobulin components. In vitro incubation of the ch14.18-IL-2 fusion protein in pooled mouse serum at 37 degrees C for 48 h resulted in a loss of its IL-2 component, as detected in enzyme-linked immunosorbent assay systems and in proliferation assays. Polyacrylamide gel electrophoresis and Western blot analysis of the fusion protein incubated in mouse serum at 37 degrees C indicated that the ch14.18-IL-2 is cleaved, resulting in a loss of the 67-kDa band (representing the IL-2 linked to the IgG1 heavy chain) and the detection of a band of more than 50 kDa, slightly heavier than the IgG1 heavy chain itself. This suggests that the fusion protein is being cleaved in vitro within the IL-2 portion of the molecule. These studies show that (1) ch14.18-IL-2 prolongs the circulatory half-life of IL-2 (compared to that of soluble IL-2) and (2) the in vivo clearance of the fusion protein occurs more rapidly than the clearance of the ch14.18 antibody itself, possibly reflecting in vivo cleavage within the IL-2 portion of the molecule, resulting in loss of IL-2 activity.  相似文献   

7.
Cadaverine (1,5-pentanediamine, diaminopentane), the desired raw material of bio-polyamides, is an important industrial chemical with a wide range of applications. Biosynthesis of cadaverine in Corynebacterium glutamicum has been a competitive way in place of petroleum-based chemical synthesis method. To date, the cadaverine exporter has not been found in C. glutamicum. In order to improve cadaverine secretion, the cadaverine–lysine antiporter CadB from Escherichia coli was studied in C. glutamicum. Fusion expression of cadB and green fluorescent protein (GFP) gene confirmed that CadB could express in the cell membrane of C. glutamicum. Co-expression of cadB and ldc from Hafnia alvei in C. glutamicum showed that the cadaverine secretion rate increased by 22 % and the yield of total cadaverine and extracellular cadaverine increased by 30 and 73 %, respectively. Moreover, the recombinant strain cultured at acid and neutral pH separately hardly had any difference in cadaverine concentrations. These results suggested that CadB could be expressed in the cell membrane of C. glutamicum and that recombinant CadB could improve cadaverine secretion and the yield of cadaverine. Moreover, the pH value did not affect the function of recombinant CadB. These results may be a promising metabolic engineering strategy for improving the yield of the desired product by enhancing its export out of the cell.  相似文献   

8.
The effect of histamine on background spontaneous electrical activity of the interrelated bladder and urethra was studied in rats. The basic characteristics of pacemaker activity (action potential amplitude, average peak rise rate, peak rise time, peak half-width, rhythmogenicity frequency) were analyzed both in normal conditions and upon exposure to histamine (10–4 mol/L). A comparison of the action potential parameters in the above organs demonstrated far lower values of the amplitude (by 34.19%; p ≤ 0.001), peak rise rate (by 30.39%; p ≤ 0.01) and peak rise time (by 18%; p ≤ 0.01) at a reduced rhythmogenicity frequency. Histamine evoked a considerable increase in the amplitude and its rise rate in the bladder (by 50.59 and 56.36%, respectively; p ≤ 0.001) and rhythmogenicity frequency (by 18%; p ≤ 0.01) at a constancy of the remaining two parameters. In the urethra, no obvious changes were detected in the action potential parameters. Morphohistochemical analysis also supported the involvement of histamine in the activation of rhythmogenicity only in the bladder. Thus, histamine is not implicated in the genesis of tonic contractions in the urethra, in contrast to its activating effect on the bladder.  相似文献   

9.
Abstract

The 1,3 dipolar cycloaddition approach represents the most valuable strategy for the preparation of isoxazolidine nucleosides. The latter posses more conformational degrees of freedom than the corresponding dideoxyribosides. Side reactions due to the presence of formaldehyde in the reaction media can be avoided by proper derivatization of the vinyl-nucleobase.  相似文献   

10.
In the course of our screening for a new anti-tumor substance, the bisabolane sesquiterpenoid endoperoxide, 3,6-epidioxy-1,10-bisaboladiene (EDBD), was isolated from the edible wild-plant, Cacalia delphiniifolia. EDBD showed cytotoxicity toward human chronic myelogenous leukemia K562 and human prostate carcinoma LNCaP cell lines with IC50 values of 9.1 μM and 23.4 μM, respectively. DNA fragmentation and condensation of chromatin, the hallmarks of apoptosis, appeared in K562 cells after an 18-h treatment with EDBD. α-Curcumene, a bisabolane sesquiterpene that lacks the endoperoxide moiety of EDBD, also showed cytotoxicity toward both K562 and LNCaP cell lines at over a 10-times higher dose than that of EDBD. The results indicate the importance of the endoperoxide structure within EDBD to its anti-tumor activity in vitro.  相似文献   

11.

Background

Our previous studies suggested that deoxyschizandrin (DSD) and schisantherin A (STA) may have cardioprotective effects, but information in this regard is lacking. Therefore, we explored the protective role of DSD and STA in myocardial ischemia–reperfusion (I/R) injury.

Methodology/Principal Findings

Anesthetized male rats were treated once with DSD and STA (each 40 µmol/kg) through the tail vein after 45 min of ischemia, followed by 2-h reperfusion. Cardiac function, infarct size, biochemical markers, histopathology and apoptosis were measured and mRNA expression of gp91phox in myocardial tissue assessed by RT-PCR. Neonatal rat cardiomyocytes were pretreated with DSD and STA and then damaged by H2O2. Cell apoptosis was tested by a flow cytometric assay. Compared with the I/R group: (i) DSD and STA could significantly reduce the abnormalities of LVSP, LVEDP, ±dp/dtmax and arrhythmias, thereby showing their protective roles in cardiac function; (ii) DSD and STA could significantly attenuate the infarct size and MDA release while increasing SOD activity, suggesting a role in reducing myocardial injury; (iii) tissue morphology and myocardial textual analysis revealed that DSD and STA mitigated changes in myocardial histopathology; (iv) DSD and STA decreased apoptosis (33.56±2.58% to 10.28±2.80% and 10.98±1.99%, respectively) and caspase-3 activity in the myocardium (0.62±0.02 OD/mg to 0.38±0.02 OD/mg and 0.32±0.02 OD/mg, respectively), showing their protective effects upon cardiomyocytes; and (v) DSD and STA had similar protective effects on I/R injury as those seen with the positive control metoprolol. In vitro, DSD and STA could significantly decrease the apoptosis of neonatal cardiomyocytes.

Conclusions/Significance

These data suggest that DSD and STA can protect against myocardial I/R injury. The underlining mechanism may be related to their role in inhibiting cardiomyocyte apoptosis.  相似文献   

12.
The latency of tonic seizure in response to loud sound (in rats of the Krushinsky–Molodkina strain with audiogenic epilepsy) had been slightly (although statistically significantly) longer after chronic uridine injections (100 mg/kg, i.p., three times a day during 9 or 12 days). The recovery time from the tonic seizure was shorter after 12 days of injections in comparison to the 9-day injection period. At the same time, the intensity of tonic seizures provoked by loud sound did not change after chronic uridine injections. The lack of uridine anticonvulsive effect demonstrated in the audiogenic epilepsy model contradicts the anticonvulsant effects of uridine in experiments with other seizure models, in which the epileptic foci were localized in the forebrain structures.  相似文献   

13.
We previously reported that Yulangsan polysaccharide (YLSP), which was isolated from the root of Millettia pulchra Kurz, attenuates withdrawal symptoms of morphine dependence by regulating the nitric oxide pathway and modulating monoaminergic neurotransmitters. In this study, we investigated the effects and mechanism of YLSP on the reinstatement of morphine-induced conditioned place preference (CPP) in rats. A CPP procedure was employed to assess the behavior of rats, and indicators of serum and four brain regions (nucleus accumbens, ventral tegmental area, hippocampus and prefrontal cortex) were determined to explore its underlying mechanism. YLSP inhibited priming morphine-induced reinstatement of CPP in a dose-dependent manner. YLSP markedly reduced nitric oxide and nitric oxide synthase levels in the brain. Moreover, YLSP significantly decreased the dopamine and norepinephrine levels in the serum and brain. Furthermore, YLSP significantly decreased cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) concentrations, inhibited the expression of dopamine D1 receptors and cAMP response element binding protein mRNA, and improved the expression of dopamine D2 receptor mRNA in the four brain regions. Our findings indicated that YLSP could inhibit the reinstatement of morphine-induced CPP possibly by modulating the NO-cGMP and D1R-cAMP signaling pathways.  相似文献   

14.
ABSTRACT

Lesch–Nyhan disease is caused by HGprt deficiency, however, the mechanism by which enzyme deficiency leads to the severe neurological manifestations is still unknown. We hypothesized that hypoxanthine excess leads, directly or indirectly, through its action in adenosine transport, to aberrations in neuronal development. We found that hypoxanthine diminishes adenosine transport and enhances stimulation of adenosine receptors. These effects cause an imbalance between adenosine, dopamine, and serotonin receptors in HGprt deficient cells, and cells differentiated with hypoxanthine showed an increase in dopamine, adenosine and serotonin receptors expression. Hypoxanthine deregulates early neuronal differentiation increasing WNT4 and EN1 gene expression.  相似文献   

15.
Linker stability is critically important for the efficacy and safety of peptide and protein conjugates used for biological applications. One common conjugation strategy, thiol–maleimide coupling, generates a succinimidyl thioether linker with limited stability under physiological conditions. We have shown in previous work that when a peptide with an N-terminal cysteine is conjugated to a maleimide reagent, a thiazine structure is formed via a chemical rearrangement. Our preliminary work indicated that the thiazine linker has favorable stability. Here, we report the evaluation of a thiazine linker as an alternative to the widely used succinimidyl thioether linker for thiol–maleimide bioconjugation. The stability of the thiazine conjugate in comparison to the thioether conjugate was assessed across a broad pH range. Additionally, the propensity for retro-Michael reaction and cross-reactivity with other thiols was evaluated by treating conjugates in the presence of glutathione. The studies indicated that the thiazine linker degrades markedly slower than the thioether conjugate. In addition, the thiazine linker is over 20 times less susceptible to glutathione adduct formation. The NMR study of the thiazine structure confirmed that the formation of the thiazine linker is a stereoselective process that yields a single diastereomer. In summary, we propose the use of the thiazine linker obtained by conjugation of maleimide-containing reagents with peptides or proteins presenting an N-terminal cysteine as a novel approach for bioconjugation. The advantages of this approach are the formation of a linker with a well-defined stereochemical configuration, increased stability at physiological pH, and a strongly reduced propensity for thiol exchange.  相似文献   

16.
Electrophysiological changes in the wakefulness—sleep cycle were studied in early postnatal ontogenesis of rat pups. EEG was recorded and its spectral power was determined, as well as spatial-temporal synchronization between the brain cortex zones (visual and sensomotor) and hippocampus in the process of sleep at various periods of ontogenesis. These data were compared with the literature data on studying of cytoarchitectonics and ultrastructure of rat neocortex as well as on formation of neuronal activity and maturation of transmitter systems at the same periods. Based on time of formation of interneuronal and interstructural connections and of maturation of transmitter systems, 3 stages of functional development of sleep in ontogenesis were identified: the first stage—undifferentiated sleep, the interneuronal connections are absent; the second stage—partially differentiated sleep, interneuronal connections function and control from subcortical structures appears; the third stage—differentiated sleep, clear division into sleep phase, additional control from all three transmitter systems: noradrenergic, cholinergic, and serotoninergic, action of the latter providing inhibitory mechanisms in CNS.__________Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 2, 2005, pp. 154–159.Original Russian Text Copyright © 2005 by Titkov, Aristakesyan, Oganesyan.  相似文献   

17.
The question whether the noncoding DNA strand had or still has the capability for encoding functional polypeptides has been addressed in several articles. The theoretical background of the views advocating this idea arose from two groups of findings. One of them was based on various observations implying that the genetic code was adapted for double-strand coding. The other group of theories arose from the observation of gene-length overlapping open reading frames (O-ORFs) on the antisense DNA strand in a number of genes. In fact, the above theories, which I term selectionist, conceive a novel conception of gene evolution, proposing that new genes can be created by the utilization of antisense DNA strand. In contrast, neutralist theory claims that the O-ORFs are mere by-products of evolutionary processes acting to create special codon usage and base distribution patterns in the coding sequences. Received: 16 June 2000 / Accepted: 31 August 2000  相似文献   

18.
19.
We studied the influence of the neuroendocrine system on the development of humoral immune response to sheep erythrocytes in rat fetuses. The removal of brain in utero by decapitation of 18-day fetuses induced a fourfold increase in the number of antibody-forming cells in the liver, as compared to the unoperated fetuses. After the removal of the forebrain, including hypothalamus (encephalectomy), the number of antibody-forming cells was comparable to that in unoperated fetuses. The observed increase in the number of antibody-forming cells in the liver was not due to a disturbed migration of precursors of B-lymphocytes in the spleen, since their content in the spleen was also four times that in the encephalectomized and unoperated fetuses. The increased number of antibody-forming cells in decapitated fetuses could be due to an enhanced proliferative activity of the lymphocytes in the liver of these fetuses. It has been proposed that humoral immunity is controlled by the hypothalamo–pituitary–adrenal system already during prenatal development; the adrenocorticotropic hormone and glucocorticoids appear to be involved in this regulation.  相似文献   

20.
Struvite urinary calculi, which are composed of magnesium, ammonium, and phosphate, can cause complications including sepsis and renal failure. Struvite calculi were identified within the urinary bladder and renal pelvis of 2 Long-Evans rats that died within days after arrival from a commercial vendor. The remaining rats in the shipment were screened by physical examination, radiography, and ultrasonography, revealing an additional 2 animals that were clinically affected. These rats were euthanized, necropsied, and yielded similar findings to those from the first 2 rats. In addition, urine samples had an alkaline pH and contained numerous bacteria (predominantly Proteus mirabilis), leukocytes, and crystals. All calculi were composed completely of struvite. Another 7 rats in the shipment had alkaline urine with the presence of blood cells; 6 of these rats also had abundant struvite crystals, and P. mirabilis was cultured from the urine of 3 rats. Further investigation by the vendor identified 2 of 100 rats with struvite calculi from the same colony. Although no specific cause could be implicated, the fact that all the affected rats came from the same breeding area suggests a genetic or environmental triggering event; a contribution due to diet cannot be ruled out. Our findings suggest that the affected rats had metabolic disturbances coupled with bacterial infection that predisposed them to develop struvite calculi. During sudden increases of struvite urinary calculi cases in rats, urine cultures followed by appropriate surgical intervention and antibiotic therapy is warranted. Additional factors, including diet, merit attention as well.Struvite, also known as triple phosphate, is a crystalline substance composed of magnesium ammonium phosphate (MgNH4PO4• 6 H20)10 that was first identified in the 18th century. This mineral is what consolidates into urinary calculi, or stones, both in humans and animals. Other frequently encountered types of urinary stones include calcium oxalate, calcium phosphate, uric acid, and cysteine.17 Although only 2% to 3% of stones from humans are composed of struvite,43 struvite calculi are important clinically because they can lead to sepsis and renal failure.43In both humans and animals, stones in the urinary tract can obstruct the urine outflow, with subsequent extreme pain, hydronephrosis, and (possibly) rupture of the urinary bladder. In addition, disruption of kidney function can lead to metabolic imbalances, such as uremia, seizures, depression, anorexia, dehydration, even coma and death.1,8 Here we present a case study describing the spontaneous presentation of struvite urolithiasis in a recently imported cohort of rats and related significant clinical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号