首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase behavior of several medium-chain (10- and 12-carbon) and long-chain (18-carbon) fatty acids in water was examined as a function of the ionization state of the carboxyl group. Equilibrium titration curves were generated above and below fatty acid and acid-soap chain melting temperatures and critical micelle concentrations, and the phases formed were characterized by X-ray diffraction, 13C NMR spectroscopy, and phase-contrast and polarized light microscopy. The resulting titration curves were divided into five regions: (i) at pH values less than 7, a two-phase region containing oil or fatty acid crystals and an aqueous phase; (ii) at pH approximately 7, a three-phase region containing oil, lamellar, and aqueous (or fatty acid crystals, 1:1 acid-soap crystals, and aqueous) phases; (iii) between pH 7 and 9, a two-phase region containing a lamellar fatty acid/soap (or crystalline 1:1 acid-soap) phase in an aqueous phase; (iv) at pH approximately 9, a three-phase region containing lamellar fatty acid-soap (or crystalline 1:1 acid-soap), micellar, and aqueous phases; and (v) at pH values greater than 9, a two-phase region containing micellar and aqueous phases. Interpretation of the results using the Gibbs phase rule indicated that, for oleic acid/potassium oleate, the composition of the lamellar fatty acid/soap phase varied from approximately 1:1 to 1:3 un-ionized to ionized fatty acid species. In addition, constant pH regions observed in titration curves were a result of thermodynamic invariance (zero degrees of freedom) rather than buffering capacity. The results provide insights into the physical states of fatty acids in biological systems.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The thermotropic properties of N-(alpha-hydroxyacyl)-sphingosine (CER[AS]) in dry and hydrated state were studied by means of X-ray powder diffraction and FT-Raman spectroscopy. The polymorphic states of the CER[AS]/water mixture (lamellar crystalline, lamellar hexagonal gel, liquid crystalline) depend on the thermal pre-treatment of the sample. Only by heating the CER[AS]/water mixture above the melting chain transition can the system be hydrated. At room temperature, both dry and hydrated states form lamellar structures, which differ in their repeat distance and packing of hydrocarbon chains. Above the melting chain transition, hydrated CER[AS] forms a liquid crystalline hexagonal phase, whereas anhydrous CER[AS] forms an isotropic liquid phase. The various phases of hydrated CER[AS] are distinguished on the basis of the corresponding Raman spectra.  相似文献   

3.
Differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the structure and phase behavior of hydrated dimyristoyl lecithin (DML) in the hydration range 7.5 to 60 weight % water and the temperature range -10 to +60 degrees C. Four different calorimetric transitions have been observed: T1, a low enthalpy transition (deltaH approximately equal to 1 kcal/mol of DML) at 0 degrees C between lamellar phases (L leads to Lbeta); T2, the low enthalpy "pretransition" at water contents greater than 20 weight % corresponding to the transition Lbeta leads to Pbeta; T3, the hydrocarbon chain order-disorder transition (deltaH = 6 to 7 kcal/mol of DML) representing the transition of the more ordered low temperature phases (Lbeta, Pbeta, or crystal C, depending on the water content) to the lamellar Lalpha phase; T4, a transition occurring at 25--27 degrees C at low water contents representing the transition from the lamellar Lbeta phase to a hydrated crystalline phase C. The structures of the Lbeta, Pbeta, C, and Lalpha phases have been examined as a function of temperature and water content. The Lbeta structure has a lamellar bilayer organization with the hydrocarbon chains fully extended and tilted with respect to the normal to the bilayer plane, but packed in a distorted quasihexagonal lattice. The Pbeta structure consists of lipid bilayer lamellae distorted by a periodic "ripple" in the plane of the lamellae; the hydrocarbon chains are tilted but appear to be packed in a regular hexagonal lattice. The diffraction pattern from the crystalline phase C indexes according to an orthorhombic cell with a = 53.8 A, b = 9.33 A, c = 8.82 A. In the lamellae bilayer Lalpha strucure, the hydrocarbon chains adopt a liquid-like conformation. Analysis of the hydration characteristics and bilayer parameters (lipid thickness, surface area/molecule) of synthetic lecithins permits an evaluation of the generalized hydration and structural behavior of this class of lipids.  相似文献   

4.
Part of a phase diagram for the system 1-palmitoyl-sn-glycero-3-phosphocholine (PamGroPCho)/oleic acid/water has been constructed from mainly 31P-NMR data and a previous determination of the phase equilibria of the binary PamGroPCHo/water system. It was found that the appearance of the phase diagram is very similar to those found for several simple soap/fatty acid/water or soap/long-chain alcohol/water systems. The most striking features observed are: (1) the lamellar phase can swell towards very high water contents (2) vesicles are formed after sonication and (3) the cubic liquid crystalline phase disappears upon addition of very small amounts of oleic acid. The self-association of the amphiphiles and the shape of the aggregates are discussed in terms of existing first-order approximative theories.  相似文献   

5.
Part of a phase diagram for the system 1-palmitoyl-sn-glycero-3-phosphocholine (PamGroPCho)/oleic acid/water has been constructed from mainly 31P-NMR data and a previous determination of the phase equilibria of the binary PamGroPCHo/water system. It was found that the appearance of the phase diagram is very similar to those found for several simple soap/fatty acid/water or soap/long-chain alcohol/water systems. The most striking features observed are: (1) the lamellar phase can swell towards very high water contents (2) vesicles are formed after sonication and (3) the cubic liquid crystalline phase disappears upon addition of very small amounts of oleic acid. The self-association of the amphiphiles and the shape of the aggregates are discussed in terms of existing first-order approximative theories.  相似文献   

6.
The sodium oleate-oleic acid (1:1) complex (NaHOl(2)) is characterized using X-ray diffraction, FT-IR photoacoustic spectroscopy, FT-Raman spectroscopy, and DSC. The special arrangement of hydrogen-bonded pairs of carboxylic acid and carboxylate groups into unique "head-group" is supported by frequency shifts and partial or total disappearance of characteristic vibrations of carboxylic acid dimer and of carboxylate groups. The well-ordered state of hydrocarbon chains is demonstrated by the existence of sharp Raman bands in the C-C stretching region (1000-1150 cm-1) and other conformationally sensitive modes. The FT-Raman results suggest that the transition at about 32 degrees C involves the cooperative melting of methyl- and carboxyl/carboxylate-sided hydrocarbon chains. From the X-ray diffraction data it is clear that this transition is associated with the disintegration of the hydrogen-bonded carboxylate-carboxylic acid complex, followed by the separate formation of oleic acid and sodium oleate. The packing of hydrocarbon chain in the acid-soap complex is different from the parent oleic acid or sodium oleate. The hydrocarbon chains in the NaHOl(2) form more stable packing (O subcell) in comparison to that of oleic acid. A temperature composition phase diagram is presented.  相似文献   

7.
SAXS/WAXS studies were performed in combination with freeze fracture electron microscopy using mixtures of a new Gemini catanionic surfactant (Gem16-12, formed by two sugar groups bound by a hydrocarbon spacer with 12 carbons and two 16-carbon chains) and the zwitterionic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) to establish the phase diagram. Gem16-12 in water forms bilayers with the same amount of hydration water as DPPC. A frozen interdigitated phase with a low hydration number is observed below room temperature. The kinetics of the formation of this crystalline phase is very slow. Above the chain melting temperature, multilayered vesicles are formed. Mixing with DPPC produces mixed bilayers above the corresponding chain melting temperature. At room temperature, partially lamellar aggregates with local nematic order are observed. Splitting of infinite lamellae into discs is linked to immiscibility in frozen state. The ordering process is always accompanied by dehydration of the system. As a consequence, an unusual order-disorder phase transition upon cooling is observed.  相似文献   

8.
The lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transitions of aqueous dispersions of a number of synthetic phosphatidylethanolamines containing linear saturated, branched chain, and alicyclic fatty acyl chains of varying length were studied by differential scanning calorimetry, 31P nuclear magnetic resonance spectroscopy, and X-ray diffraction. For any given homologous series of phosphatidylethanolamines containing a single chemical class of fatty acids, the lamellar gel/liquid-crystalline phase transition temperature increases and the lamellar liquid-crystalline/reversed hexagonal phase transition temperature decreases with increases in hydrocarbon chain length. For a series of phosphatidylethanolamines of the same hydrocarbon chain length but with different chemical structures, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary markedly and in the same direction. In particular, at comparable effective hydrocarbon chain lengths, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary in parallel, such that the temperature difference between these two phase transitions is nearly constant. Moreover, at comparable effective acyl chain lengths, the d spacings of the lamellar liquid-crystalline phases and of the inverted hexagonal phases are all similar, implying that the thickness of the phosphatidylethanolamine bilayers at the onset of the lamellar liquid-crystalline/reversed hexagonal phase transition and the diameter of the water-filled cylinders formed at the completion of this phase transition are comparable and independent of the chemical structure of the acyl chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
S Mulukutla  G G Shipley 《Biochemistry》1984,23(11):2514-2519
The structure and thermotropic properties of hydrated bilayers of 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine (DMPE) and its N-monomethyl (mmDMPE) and N,N-dimethyl (dmDMPE) derivatives have been investigated by differential scanning calorimetry and X-ray diffraction. For DMPE, mmDMPE, and dmDMPE, multilamellar dispersions (approximately 50 wt % water) show chain melting bilayer gel----bilayer liquid-crystal transitions (onset) at 49.2, 42.3, and 30.7 degrees C, respectively, with the corresponding value for 1,2-dimyristoyl-sn-glycero-3-phosphocholine occurring at 23 degrees C. Thus, the bilayer chain melting transition decreases with increasing N-methylation, as originally reported for the corresponding palmitoyl series [Vaughan, D.J., & Keough, K.M. (1974) FEBS Lett. 47, 158-161]. This transition is reversible on cooling, and DMPE, mmDMPE, and dmDMPE form the original bilayer gel phase with the rotationally disordered hydrocarbon chains packed in a hexagonal lattice. Following prolonged incubation at -4 degrees C, the bilayer gel phase is shown to be metastable, and conversion to a low-temperature "crystalline" phase occurs with the hydrocarbon chains adopting a specific packing mode. For DMPE, mmDMPE, and dmDMPE, either a single or a double endothermic transition occurs as the "crystal" bilayer phase converts to the bilayer gel phase. A similar pattern of behavior is observed for the palmitoyl series. The relatively slow kinetic conversion of the metastable bilayer gel phase with hexagonally packed hydrocarbon chains to a bilayer phase in which the chains have "crystallized" appears to be a general property of membrane phospholipids and sphingolipids.  相似文献   

10.
The phase equilibria in four lysophosphatidylcholine/water systems were investigated at different temperatures. Each of the 1-palmitoyl-, 1-stearoyl-, 1-oleoyl- and 1-linoleoyl-sn-glycero-3-phosphocholines was dispersed in heavy water at different concentrations. The phase structures were determined by 2H-, 14N- and 31P-NMR, polarization microscopy and low-angle X-ray diffraction. The phase diagrams of the oleoyl and linoleoyl systems were quite similar. At room temperature and with decreasing water content the isotropic micellar solution was followed by a hexagonal phase and then a cubic phase. Finally the lamellar phase appeared before the region of hydrated crystals. The same sequence of phases was observed in the stearoyl system at elevated temperatures. The palmitoyl system differed from the others: here a cubic phase followed after the micellar solution, then came a hexagonal phase and after this a lamellar phase. In general the lysophosphatidylcholines seem to behave similarly to the many soaps and detergents as they show the same sequence of isotropic micellar solution, hexagonal phase, lamellar phase with interspersed cubic phases. The presently established phase diagrams demonstrate that the major lysophosphatidylcholines which may be generated by phospholipase A2 in mammalian cell membranes, viz. 1-palmitoyl- and 1-stearoyl-glycerophosphocholines differ greatly in their packing properties. The extraordinary ability of 1-palmitoyl-glycerophosphocholine to form a cubic phase in equilibrium with a micellar solution is of particular interest with regard to the possible occurrence of cubic structures in biomembranes during the process of fusion.  相似文献   

11.
We have synthesized a homologous series of saturated 1,2-di-O-n-acyl-3-O-(beta-D-galactopyranosyl)-sn-glycerols with odd- and even-numbered hydrocarbon chains ranging in length from 10 to 20 carbon atoms, and have investigated their physical properties using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The DSC results show a complex pattern of phase behaviour, which in a typical preheated sample consists of a lower temperature, moderately energetic lamellar gel/lamellar liquid-crystalline (L(beta)/L(alpha)) phase transition and a higher temperature, weakly energetic lamellar/nonlamellar phase transition. On annealing at a suitable temperature below the L(beta)/L(alpha) phase transition, the L(beta) phase converts to a lamellar crystalline (L(c1)) phase which may undergo a highly energetic L(c1)/L(alpha) or L(c1)/inverted hexagonal (H(II)) phase transition at very high temperatures on subsequent heating or convert to a second L(c2) phase in certain long chain compounds on storage at or below 4 degrees C. The transition temperatures and phase assignments for these galactolipids are supported by our XRD and FTIR spectroscopic measurements. The phase transition temperatures of all of these events are higher than those of the comparable phase transitions exhibited by the corresponding diacyl alpha- and beta-D-glucosyl glycerols. In contrast, the L(beta)/L(alpha) and lamellar/nonlamellar phase transition temperatures of the beta-D-galactosyl glycerols are lower than those of the corresponding diacyl phosphatidylethanolamines (PEs) and these glycolipids form inverted cubic phases at temperatures between the lamellar and H(II) phase regions. Our FTIR measurements indicate that in the L(beta) phase, the hydrocarbon chains form a hexagonally packed structure in which the headgroup and interfacial region are undergoing rapid motion, whereas the L(c) phase consists of a more highly ordered, hydrogen-bonded phase, in which the chains are packed in an orthorhombic subcell similar to that reported for the diacyl-beta-D-glucosyl-sn-glycerols. A comparison of the DSC data presented here with our earlier studies of other diacyl glycolipids shows that the rate of conversion from the L(beta) to the L(c) phase in the beta-D-galactosyl glycerols is slightly faster than that seen in the alpha-D-glucosyl glycerols and much faster than that seen in the corresponding beta-D-glucosyl glycerols. The similarities between the FTIR spectra and the first-order spacings for the lamellar phases in both the beta-D-glucosyl and galactosyl glycerols suggest that the headgroup orientations may be similar in both beta-anomers in all of their lamellar phases. Thus, the differences in their L(beta)/L(c) conversion kinetics and the lamellar/nonlamellar phase properties of these lipids probably arise from subtly different hydration and H-bonding interactions in the headgroup and interfacial regions of these phases. In the latter case, such differences would be expected to alter the ability of the polar headgroup to counterbalance the volume of the hydrocarbon chains. This perspective is discussed in the context of the mechanism for the L(alpha)/H(II) phase transition which we recently proposed, based on our X-ray diffraction measurements of a series of PEs.  相似文献   

12.
The phase behavior of mixed lipid dispersions representing the inner leaflet of the cell membrane has been characterized by X-ray diffraction. Aqueous dispersions of phosphatidylethanolamine:phosphatidylserine (4:1 mole/mole) have a heterogeneous structure comprising an inverted hexagonal phase H(II) and a lamellar phase. Both phases coexist in the temperature range 20-45 degrees C. The fluid-to-gel mid-transition temperature of the lamellar phase assigned to phosphatidylserine is decreased from 27 to 24 degrees C in the presence of calcium. Addition of sphingomyelin to phosphatidylethanolamine/phosphatidylserine prevents phase separation of the hexagonal H(II) phase of phosphatidylethanolamine but the ternary mixture phase separates into two lamellar phases of periodcity 6.2 and 5.6 nm, respectively. The 6.2-nm periodicity is assigned to the gel phase enriched in sphingomyelin of molecular species comprising predominantly long saturated hydrocarbon chains because it undergoes a gel-to-fluid phase transition above 40 degrees C. The coexisting fluid phase we assign to phosphatidylethanolamine and phosphatidylserine and low melting point molecular species of sphingomyelin which suppresses the tendency of phosphatidylethanolamine to phase-separate into hexagonal H(II) structure. There is evidence for considerable hysteresis in the separation of lamellar fluid and gel phases during cooling. The addition of cholesterol prevents phase separation of the gel phase of high melting point sphingomyelin in mixtures with phosphatidylserine and phosphatidylethanolamine. In the quaternary mixture the lamellar fluid phase, however, is phase separated into two lamellar phases of periodicities of 6.3 and 5.6 nm (20 degrees C), respectively. The lamellar phase of periodicity 5.6 nm is assigned to a phase enriched in aminoglycerophospholipids and the periodicity 6.3 nm to a liquid-ordered phase formed from cholesterol and high melting point molecular species of sphingomyelin characterized previously by ESR. Substituting 7-dehydrocholesterol for cholesterol did not result in evidence for lamellar phase separation in the mixture within the temperature range 20-40 degrees C. The specificity of cholesterol in creation of liquid-ordered lamellar phase is inferred.  相似文献   

13.
Several new features of the phase diagram of L-dipalmitoylphosphatidylcholine (DPPC)/palmitic acid mixtures in excess water were established by means of static and time-resolved X-ray diffraction, densitometry and differential scanning calorimetry (DSC). At low temperatures, palmitic acid has a biphasic effect on the lamellar subgel phases: at concentrations below 5-6 mol%, it prevents formation of the DPPC subgel phase (Lc), while at higher contents (between about 40 and 90 mol%) another subgel phase (Lccom) is formed as a result of lipid co-crystallization at 1 DPPC: 2 palmitic acid stoichiometry. A crystalline palmitic acid phase separates from Lccom above 70-80 mol% of fatty acid. The Lccomphase transforms into a lamellar gel phase (L beta) in an endothermic transition centered at 38 degrees C. At high temperatures, the mixtures form hexagonal liquid-crystalline phase (HII) in the region of 60-70 mol% and an isotropic phase (I) at 90-100 mol% of palmitic acid. No coexistence of HII phase with the fluid lamellar phase of DPPC was observed at intermediate compositions (20 and 50 mol% of palmitic acid) but rather formation of a complex phase with non-periodic geometry characterized by molten chains and a broad, continuous small-angle scattering band. No evidence for fluid phase coexistence was found also at compositions between HII and I phases. The L beta--HII transition at 60-70 mol% of palmitic acids is readily reversible and two-state in both heating and cooling modes. It is characterized by the coexistence of initial and final phases with no detectable intermediates by time-resolved and static X-ray diffraction. The crystalline-isotropic transition in palmitic acid is two-state only in heating direction. On cooling, it is characterized by strong undercooling and gradually relaxing lamellar crystalline structures. The slowly reversible Lccom--L beta transition proceeds continuously through intermediate states. Although clearly discernible by both DSC and X-ray diffraction, it is not accompanied by specific volume changes.  相似文献   

14.
Crystal growth and solid-state structure of poly(lactide) Stereocopolymers   总被引:1,自引:0,他引:1  
Solid-state structure and melting behavior for random stereocopolymers of L-lactide with meso-lactide (P(L-LA-co-meso-LA)) with different meso-LA compositions of 0, 2, 4, and 10 mol % were investigated under various isothermal crystallization conditions. The crystalline morphology of P(L-LA-co-meso-LA) samples changed from the spherulitic aggregates to hexagonal lamellae stacking with a rise in crystallization temperature. Under each crystallization condition, P(L-LA-co-meso-LA) samples formed alpha-crystal modifications for homopolymer of L-LA. By using the atomic force microscopy and small-angle X-ray scattering, the stacking structure of lamellar crystals was examined for the isothermally crystallized P(L-LA-co-meso-LA) thin films. The lamellar thickness of P(L-LA-co-meso-LA) ranged from 6.2 to 15.5 nm, and the values increased with crystallization temperature. Melting profiles of crystalline regions were examined by the differential scanning calorimetry (DSC) for the P(L-LA-co-meso-LA) samples. Distinct two melting peaks were detected in the DSC thermograms of several samples. Investigations on the time-dependent changes in lamellar structure and melting temperature of the P(L-LA-co-meso-LA) samples under isothermal crystallization conditions provided the evidence that a small amount of D-lactyl units was trapped in the crystalline regions during early stage of crystallization process under the certain crystallization condition. In addition, it was found that the D-lactyl units trapped in crystalline regions were excluded from crystalline lamellae to form the thermally stable crystals without changes in crystal thickness during further isothermal storage at a crystallization temperature. The equilibrium melting temperature (T(m)0) of P(L-LA-co-meso-LA) samples was estimated by using modified Hoffman-Weeks methods, and the obtained values decreased from 215 to 184 degrees C as the meso-LA composition was increased from 0 to 10 mol %. Furthermore, the crystal growth kinetics of the P(L-LA-co-meso-LA) samples was analyzed by using the secondary nucleation theory. Transitions of crystalline regime both from regime III to regime II and from regime II to regime I were detected for each sample. The transition temperature from regime II to regime I of each of the P(L-LA-co-meso-LA) samples was very close to the temperature region revealed the morphological changes in the crystalline aggregates from the spherulitic aggregates to hexagonal lamellae stacking.  相似文献   

15.
The ether-linked phosphatidylcholines 1-eicosyl-2-dodecyl-rac-glycero-3-phosphocholine (EDPC) and 1-dodecyl-2-eicosyl-rac-glycero-3-phosphocholine (DEPC) have been investigated by differential scanning calorimetry (DSC) and X-ray diffraction. DSC of hydrated EDPC shows a single endothermic transition at 34.8 degrees C (delta H = 11.2 kcal/mol) after storage at -4 degrees C while DEPC shows three endothermic transitions at 7.7 and approximately 9.0 degrees C (combined delta H approximately 0.4 kcal/mol) and at 25.2 degrees C (delta H = 4.7 kcal/mol). Both the single transition of EDPC and the two higher temperature transitions of DEPC are reversible, while the approximately 7.7 degrees C transition of DEPC increases in enthalpy on low-temperature incubation. At 23 degrees C, X-ray diffraction of hydrated EDPC shows a sharp reflection at 4.2 A together with lamellar reflections corresponding to a bilayer periodicity, d = 56.2 A. Electron density profiles derived from swelling experiments show a phosphate-phosphate intrabilayer distance, dp-p, of 36 A at all hydrations. This, together with calculated lipid thickness and molecular area considerations, suggests an interdigitated, three chains per head group, bilayer gel phase, L beta*, with no hydrocarbon chain tilt. This is structurally analogous to the bilayer gel phase of hydrated 18:0/10:0 ester PC [McIntosh, T. J., Simon, S. A., Ellington, J. C., Jr., & Porter, N. A. (1984) Biochemistry 23, 4038]. In contrast, DEPC at -4 degrees C shows an L beta' bilayer gel phase with tilted hydrocarbon chains (d = 61.1 A). However, this transforms above 9 degrees C to an interdigitated, triple-chain, L beta* bilayer gel phase (identical with that of EDPC) with d = 56.6 A and a phosphate-phosphate distance of 36 A. Above their respective chain melting transitions, Tm, EDPC and DEPC exhibit liquid-crystalline L alpha bilayer phases with d = 64.5 and 65.0 A at 55 and 45 degrees C, respectively. The ability of both EDPC and DEPC to form triple-chain interdigitated gel-state bilayers suggests that the conformational inequivalence at the sn-1 and sn-2 positions is less pronounced in the ether-linked PCs compared to the ester-linked PCs, where only one of the positional isomers, e.g., 18:0/10:0 PC but not 10:0/18:0 PC, forms the triple-chain structure (J. Mattai, unpublished results). Thus, a different conformation around the glycerol is predicted for ether-linked PC compared to ester-linked PC.  相似文献   

16.
The structural and thermal properties of aqueous dispersions of the totally synthetic cerebrosides, D-erythro-N-palmitoyl galactosyl- and glucosyl-C18-sphingosine (C16:0-GalCer and C16:0-GluCer, respectively) have been studied using differential scanning calorimetry (DSC) and X-ray diffraction. Over the temperature range 0-100 degrees C, both C16:0-GalCer and C16:0-GluCer show complex thermal transitions characteristic of polymorphic behavior of exclusively bilayer phases. On heating, hydrated C16:0-GalCer undergoes an exothermic bilayer-bilayer transition at 59 degrees C to produce a stable bilayer crystal form. X-ray diffraction at 70 degrees C reveals a bilayer structure with an ordered hydrocarbon chain-packing arrangement. This ordered bilayer phase undergoes an endothermic chain-melting transition at 85 degrees C to the bilayer liquid crystalline state. Similar behavior is exhibited by hydrated C16:0-GluCer which undergoes the exothermic transition at 49 degrees C and a chain-melting transition at 87 degrees C. The exothermic transitions observed on heating hydrated C16:0-GalCer and C16:0-GluCer are irreversible and dependent upon previous chain melting, prior cooling rate, and time of incubation at low temperatures. Thus, the structure and properties of totally synthetic C16:0-GalCer and C16:0-GluCer with identical sphingosine (C18:1) and fatty acid (C16:0) chains are quite similar, suggesting that the precise isomeric structure of the linked sugar plays only a minor role in regulating the properties of hydrated cerebrosides. Further, these studies indicate that the complex thermal behavior and bilayer phase formation exhibited by these single-sugar cerebrosides are intrinsic properties and not due to the heterogeneity of the sphingosine base found in natural and partially synthetic cerebrosides.  相似文献   

17.
The phase equilibria of a swelling amphiphile, dimyristoylphosphatidylcholine (DMPC) and a cationic soap, cetyltrimethylammoniumbromide (CTAB) has been investigated in water at 30°C. The swelling of the lamellar phase of DMPC in water increases dramatically in the presènce of a few mol% of CTAB. Maximum swelling of the lamellar phase in water is obtained when the lamellar phase is in equilibrium with aqueous solution whose concentration of CTAB is less than the critical micell concentration (cmc). Vesicles are easily formed by the lamellar phase in this region. When the cme of CTAB is exceeded, DMPC is solubilized in micelles. The solubilizing capacity corresponds to about 1 mol of DMPC per 3 mol of CTAB. The phase behaviour of DMPC and CTAB in water is very similar to the corresponding equilibria for amphiphite compounds with shorter hydrocarbon chains. The swelling of DMPC and CTAB is influenced by the presence of electrolytes in the water phase. Due to electrostatic effects the swelling of the lamellar phase is lower in electrolyte solutions than in pure water.  相似文献   

18.
In order to characterize the arrangements of the hydrocarbon chains of ceramide 3, the thermotropic phase behaviour of the ceramides N-octadecanoylphytosphingosine (CER3) and its chain deuterated derivative N-(d(35)-octadecanoyl)phytosphingosine (d(35)CER3) was studied by means of X-ray powder diffraction, FT-IR and Raman spectroscopy. CER3 and d(35)CER3 exhibit an identical thermotropic polymorphism involving three different crystalline phases. The selective deuteration of the fatty acid chain enables to distinguish the sphingoid part from the fatty acid part by means of FT-IR and Raman spectroscopy. It could be shown that both hydrocarbon chains are arranged in different subcells. Temperature dependent Raman measurements elucidate simultaneously the changes in the trans/gauche ratios and the packing of both the hydrocarbon chains of the fatty acid and of the sphingoid part. The phase behaviour of CER3 and d(35)CER3, both dry and hydrated, was investigated.  相似文献   

19.
The structure of D-erythro-C18 ceramide at the air-water interface   总被引:1,自引:0,他引:1       下载免费PDF全文
X-ray reflectivity (XR) and diffraction at grazing angles of incidence (GID) were conducted to determine the structure of synthetic D-erythro C18-ceramide films at the air-water interface at various surface pressures (pi). Analysis of the GID reveals that the monomolecular film, at the crystalline phase (pi > 0 mN/m), is predominantly hexagonal. In this crystalline phase, the analysis of the reflectivity yields an electron density profile that consists of three distinct homogeneous slabs, one associated with the headgroup region and the other two with the hydrocarbon chains. At large molecular areas (pi approximately 0), isolated crystalline domains coexist with two-dimensional gas phase. Within the crystalline domains, we find an orthorhombic arrangement of the chains that coexists with the hexagonal symmetry. It is argued that the two-dimensional orthorhombic crystals are induced by hydrogen bonding between headgroups even at very low surface pressures. Although their structure is incommensurate with the simple hexagonal arrangement, they act as nucleation centers for the conventional hexagonal phase which dominates at high pi.  相似文献   

20.
For the first time the electron density of the lamellar liquid crystalline as well as of the inverted hexagonal phase could be retrieved at the transition temperature. A reliable decomposition of the d-spacings into hydrophobic and hydrophilic structure elements could be performed owing to the presence of a sufficient number of reflections. While the hydrocarbon chain length, d(C), in the lamellar phase with a value of 14.5 A lies within the extreme limits of the estimated chain length of the inverse hexagonal phase 10 A < d(C) < 16 A, the changes in the hydrophilic region vary strongly. During the lamellar-to-inverse hexagonal phase transition the area per lipid molecule reduces by approximately 25%, and the number of water molecules per lipid increases from 14 to 18. On the basis of the analysis of the structural components of each phase, the interface between the coexisting mesophases between 66 and 84 degrees C has been examined in detail, and a model for the formation of the first rods in the matrix of the lamellar phospholipid stack is discussed. Judging from the structural relations between the inverse hexagonal and the lamellar phase, we suggest a cooperative chain reaction of rod formation at the transition midpoint, which is mainly driven by minimizing the interstitial region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号