首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microheterogeneity of a photosystem I (PSI) subunit encodedby a nuclear gene psaE was examined in Nicotiana sylvestris,with the aid of cDNA cloning, peptide mapping analysis and proteinsequencing. The psaE product of this plant has four isoformswhose mobilities in PAGE are slightly different from each other.We isolated two types of psaE cDNAs from a N. sylvestris cDNAlibrary, and designated the corresponding genes as psaEa andpsaEb, respectively. The psaEa and psaEb genes are 77% homologousat DNA level, and their translation products share 80.4% homologyfor the precursor proteins and 89.1% for the mature forms. Comparativeanalysis of the four isoproteins and the putative products ofthe two psaE genes revealed that two isoproteins out of fourare derived from psaEa gene, and the difference between thesetwo isoproteins lies in the respective presence or absence ofN-terminal alanine. Likewise, the other two proteins are derivedfrom psaEb with similar N-terminal heterogeneity. These resultsindicate that multi-gene organization and heterogeneous N-terminalformation at post-translational level are two possible causesfor PSI subunit polymorphism in isogenic plant lines. (Received October 8, 1993; Accepted November 30, 1993)  相似文献   

2.
Ferredoxin Cross-Links to a 22 kD Subunit of Photosystem I   总被引:7,自引:8,他引:7       下载免费PDF全文
We have used a cross-linking approach to study the interaction of ferredoxin (Fd) with photosystem I (PSI). The cross-linking reagent N-ethyl-3-(3-dimethylaminopropyl) carbodiimide was found to cross-link spinach Fd to a 22 kilodalton subunit of PSI in both isolated spinach (Spinacia oleracea) PSI complexes and spinach thylakoid membranes. The product had an apparent molecular weight of 38 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was identified as a cross-linked product using specific antibodies to Fd and the 22 kilodalton subunit. In both a native PSI complex (200 Chl/P700) and a PSI core complex (100 Chl/P700), a second cross-linked product at 36 kilodaltons was seen. The latter cross-reacted with an antibody to Fd but did not cross-react with antibodies directed against the 24.3, 22, 19, 17.3 or 8.5 kilodalton, or psaC subunits of PSI. Its composition remains to be determined. In thylakoids only the 38 kilodalton product was observed along with a cross-linked complex of Fd and Fd:NADP+ reductase.  相似文献   

3.
Photosystem I (PSI) has been isolated from mesophyll chloroplasts of mature maize leaves. The isolated PSI (PSI-200) was used as starting material for preparing an antenna-depleted core (PSI-100). Both of these preparations appear to be quite analogous to PSI complexes isolated from other plant tissue sources, such as those from C3 plants, as judged from NADP photoreduction assays, immunoblotting, and the ability of the complexes to form a covalent crosslinked product with spinach plastocyanin. The study suggests that the PSI complex from a C4 plant is similar to that isolated from a C3 plant in that both contain the plastocyanin docking protein although the apparent molecular weight of these respective subunits differ slightly.  相似文献   

4.
cDNA clones encoding the PS I-H subunit of photosystem I wereisolated from Nicotiana tabacum and Nicotiana sylvestris. Thenucleotide sequences of three clones showed that, in both species,the mature PS I-H protein consists of 95 amino acid residuesand has a calculated molecular mass of 10.3 kDa. 3 Present address: The Institute of Physical and Chemical Research,Tsukuba, 305 Japan.  相似文献   

5.
According to the “state transitions” theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality. The role of LHCII phosphorylation upon changes in light intensity is less thoroughly investigated, particularly when changes in light intensity are too fast to allow the phosphorylation/dephosphorylation processes to occur. Here, we demonstrate that the Arabidopsis (Arabidopsis thaliana) stn7 (for state transition7) mutant, devoid of the STN7 kinase and LHCII phosphorylation, shows a growth penalty only under fluctuating white light due to a low amount of PSI. Under constant growth light conditions, stn7 acquires chloroplast redox homeostasis by increasing the relative amount of PSI centers. Thus, in plant chloroplasts, the steady-state LHCII phosphorylation plays a major role in preserving PSI upon rapid fluctuations in white light intensity. Such protection of PSI results from LHCII phosphorylation-dependent equal distribution of excitation energy to both PSII and PSI from the shared LHCII antenna and occurs in cooperation with nonphotochemical quenching and the proton gradient regulation5-dependent control of electron flow, which are likewise strictly regulated by white light intensity. LHCII phosphorylation is concluded to function both as a stabilizer (in time scales of seconds to minutes) and a dynamic regulator (in time scales from tens of minutes to hours and days) of redox homeostasis in chloroplasts, subject to modifications by both environmental and metabolic cues. Exceeding the capacity of LHCII phosphorylation/dephosphorylation to balance the distribution of excitation energy between PSII and PSI results in readjustment of photosystem stoichiometry.Plant acclimation to different quantities and qualities of light has been extensively investigated. The light quality experiments have usually concerned the red/blue and far-red light acclimation strategies, which have been closely related to the state transitions and the phosphorylation of the light-harvesting complex II (LHCII) proteins, Lhcb1 and Lhcb2, by the state transition7 (STN7) kinase (Allen, 2003; Bellafiore et al., 2005; Bonardi et al., 2005; Tikkanen et al., 2006; Rochaix, 2007). Such studies on acclimation to different qualities of light have uncovered key mechanisms required for the maintenance of photosynthetic efficiency in dense populations and canopies (Dietzel et al., 2008). However, the role of LHCII phosphorylation under fluctuations in the quantity of white light has been scarcely investigated. Light conditions in natural environments may be very complex with respect to the quantity of white light, which constantly fluctuates both in short- and long-term durations (Smith, 1982; Külheim et al., 2002). Thus, the acclimation strategies to natural environments must concomitantly meet the challenges of both high- and low-light acclimation. Changing cloudiness, for example, would initiate both the high-light and low-light acclimation signals in the time scale of minutes and hours, whereas the movements of leaves in the wind or the rapid movement of clouds would initiate even more frequent light acclimation signals. The kinetics of reversible LHCII phosphorylation is far too slow to cope with rapid environmental changes.The phosphorylation level of LHCII proteins in the thylakoid membrane is regulated by both the STN7 kinase and the counteracting PPH1/TAP38 phosphatase (Pribil et al., 2010; Shapiguzov et al., 2010). No definite results are available about regulation of the PPH1/TAP38 phosphatase, but the STN7 kinase is strongly under redox regulation (Lemeille et al., 2009) and controls the phosphorylation level of LHCII proteins under varying white light intensities as well as according to chloroplast metabolic cues, as described already decades ago (Fernyhough et al., 1983; Rintamäki et al., 2000; Hou et al., 2003). So far, research on the role of the STN7 kinase and LHCII phosphorylation in the light acclimation of higher plants has heavily focused on reversible LHCII phosphorylation and concomitant state transitions. The state 1-to-state 2 transition, by definition, means the phosphorylation of LHCII proteins, their detachment from PSII in grana membranes, and migration to the stroma membranes to serve in the collection of excitation energy to PSI (Fork and Satoh, 1986; Williams and Allen, 1987; Wollman, 2001; Rochaix, 2007; Kargul and Barber, 2008; Murata, 2009; Lemeille et al., 2010; Minagawa, 2011). Concomitantly, the absorption cross section of PSII decreases and that of PSI increases (Canaani and Malkin, 1984; Malkin et al., 1986; Ruban and Johnson, 2009). Indeed, state transitions have been well documented when different qualities (blue/red and far red) of light, preferentially exciting either PSII or PSI, have been applied.Different from state transitions, the white light intensity-dependent reversible LHCII phosphorylation does not result in differential excitation of the two photosystems (Tikkanen et al., 2010). Instead, both photosystems remain nearly equally excited independently whether the LHCII proteins are heavily phosphorylated or strongly dephosphorylated. Moreover, it is worth noting that the different qualities of light generally used to induce reversible LHCII phosphorylation and state transitions (blue/red and far-red lights) have usually been of very low intensity (for review, see Haldrup et al., 2001), and apparently, minimal protonation of the lumen takes place under such illumination conditions. Yet another difference between induction of LHCII protein phosphorylation by different qualities of light or different quantities of white light concerns the concomitant induction of PSII core protein phosphorylation. In the former case, the level of PSII core protein phosphorylation follows the phosphorylation pattern of LHCII proteins, whereas under different quantities of white light, the phosphorylation behavior of PSII core and LHCII proteins is the opposite (Tikkanen et al., 2008b).To gain a more comprehensive understanding of the physiological role of white light-induced changes in LHCII protein phosphorylation, we have integrated Arabidopsis (Arabidopsis thaliana) LHCII phosphorylation with other light-dependent regulatory modifications of light harvesting and electron transfer in the thylakoid membrane, which include the nonphotochemical quenching of excitation energy (for review, see Niyogi, 1999; Horton and Ruban, 2005; Barros and Kühlbrandt, 2009; de Bianchi et al., 2010; Jahns and Holzwarth, 2012; Ruban et al., 2012) and the photosynthetic control of electron transfer by the cytochrome b6f (Cytb6f) complex (Rumberg and Siggel, 1969; Witt, 1979; Tikhonov et al., 1981; Bendall, 1982; Nishio and Whitmarsh, 1993; Joliot and Johnson, 2011; Suorsa et al., 2012; for review, see Foyer et al., 1990, 2012), both strongly dependent on lumenal protonation.It is demonstrated that the steady-state LHCII phosphorylation is particularly important under rapidly fluctuating light (FL) conditions. This ensures equal energy distribution to both photosystems, prevents the accumulation of electrons in the intersystem electron transfer chain (ETC), eliminates perturbations in chloroplast redox balance, and maintains PSI functionality upon rapid fluctuations in white light intensity.  相似文献   

6.
Photosystem I.   总被引:1,自引:0,他引:1       下载免费PDF全文
P R Chitnis 《Plant physiology》1996,111(3):661-669
  相似文献   

7.
Photosystem I polypeptides   总被引:1,自引:0,他引:1  
Photosystem I mediates light-induced electron transport from reduced plastocyanin in the thylakoid lumen to oxidized ferredoxin in the stroma. Photosystem I is located in the stroma lamellae of the thylakoid system and consists of a peripheral light-harvesting pigment-protein complex and a core complex carrying the electron transfer components and additional antenna pigments. The core complex consists of 11 different polypeptide subunits, five of which are chloroplast encoded and six of which are encoded by nuclear genes. The structure and function of the different subunits of the photosystem 1 core complex is discussed.  相似文献   

8.
Photosystem I is an integral component of the thylakoid membrane which catalyzes the photoreduction of ferredoxin using plastocyanin or cytochrome c as electron donor. In higher plants, the photosystem I complex is composed of eight protein subunits, chlorophyll a, carotenoids, phylloquinone and bound iron sulfur clusters. The molecular biology and biochemistry of the complex are discussed in relation to the structure and function of the individual components. The mechanisms involved in the assembly of the components into a functional complex are also discussed.  相似文献   

9.
The PSI core complex prepared from cucumber cotyledons, which contains 80 chlorophylls per reaction center (P700) and eight polypeptides with apparent molecular masses of 65/63, 20, 19.5, 18.5, 17.5, 7.6, and 5.8 kDa, has been shown to catalyze the light-dependent transfer of electrons from plastocyanin to ferredoxin. The "native" PSI complex, which contains more than fifteen polypeptides and 120 chlorophylls per P700, did not show higher activity. Any attempt to deplete subunit(s) of the core complex decreased its activity. These results suggest that in addition to light-harvesting chlorophyll a/b protein complexes, several genes of psaA-psaK, which have been proposed as components of PSI complex, are not involved in the activity of PSI complex. It was also found that the amount of 18.5-kDa polypeptide in the PSI complex affects the activity: when this polypeptide was largely depleted, the complex was almost inactive. The inactivation was due to inhibition of electron transfer from plastocyanin to photooxidized P700. Chemical cross-linking and N-terminal amino acid sequencing experiments indicated that the 18.5-kDa polypeptide is the plastocyanin-docking protein and the psaF gene product. The function of the psaF gene product was discussed.  相似文献   

10.
We have investigated whether the precursors for the light-harvesting chlorophyll a/b binding proteins (LHCP) of photosystems II and I (PSII and PSI) are cleavable substrates in an organelle-free reaction, and have compared the products with those obtained during in vitro import into chloroplasts. Representatives from the tomato (Lycopersicon esculentum) LHCP family were analyzed. The precursor for LHCP type I of PSII (pLHCPII-1), encoded by the tomato gene Cab3C, was cleaved at only one site in the organelle-free assay, but two sites were recognized during import, analogous to our earlier results with a wheat precursor for LHCPII-1. The relative abundance of the two peptides produced was investigated during import of pLHCPII-1 into chloroplasts isolated from plants greened for 2 or 24 hours. In contrast to pLHCPII-1, the precursors for LHCP type II and III of PSI were cleaved in both assays, giving rise to a single peptide. The precursor for LHCP type I of PSI, encoded by gene Cab6A, yielded two peptides of 23.5 and 21.5 kilodaltons during import, whereas in the organelle-free assay only the 23.5 kilodalton peptide was found. N-terminal sequence analysis of this radiolabeled peptide has tentatively identified the site cleaved in the organelle-free assay between met40 and ser41 of the precursor.  相似文献   

11.
Polyphenol oxidase (PPO) appears to be ubiquitous in higher plants but, as yet, no function has been ascribed to it. Herein, we report on the localization of PPO based upon biochemical fractionation of chloroplast membranes in Vicia faba (broad bean) into various complexes and immunocytochemical electron microscopic investigations. Sucrose density gradient fractionations of thylakoid membranes after detergent solubilization reveals that PPO protein (by reactivity with anti-PPO antibody) and activity (based upon ability to oxidize di-dihydroxyphenylalanine) are found only in fractions enriched in photosystem II (PSII). Furthermore, of the PSII particles isolated using three different protocols utilizing several plant species, all had PPO. Immunogold localization of PPO on thin sections reveals exclusive thylakoid labeling with a distribution pattern consistent with other PSII proteins (80% grana, 20% stroma). These data strongly indicate that PPO is at least peripherally associated with the PSII complex.  相似文献   

12.
Cyanobacterial Acclimation to Photosystem I or Photosystem II Light   总被引:9,自引:4,他引:5       下载免费PDF全文
The organization and function of the photochemical apparatus of Synechococcus 6301 was investigated in cells grown under yellow and red light regimes. Broadband yellow illumination is absorbed preferentially by the phycobilisome (PBS) whereas red light is absorbed primarily by the chlorophyll (Chl) pigment beds. Since PBSs are associated exclusively with photosystem II (PSII) and most of the Chl with photosystem I (PSI), it follows that yellow and red light regimes will create an imbalance of light absorption by the two photosystems. The cause and effect relationship between light quality and photosystem stoichiometry in Synechococcus was investigated. Cells grown under red light compensated for the excitation imbalance by synthesis/assembly of more PBS-PSII complexes resulting in high PSII/PSI = 0.71 and high bilin/Chl = 1.30. The adjustment of the photosystem stoichiometry in red light-grown cells was necessary and sufficient to establish an overall balanced absorption of red light by PSII and PSI. Cells grown under yellow light compensated for this excitation imbalance by assembly of more PSI complexes, resulting in low PSII/PSI = 0.27 and low bilin/Chl = 0.42. This adjustment of the photosystem stoichiometry in yellow light-grown cells was necessary but not quite sufficient to balance the absorption of yellow light by the PBS and the Chl pigment beds. A novel excitation quenching process was identified in yellow light-grown cells which dissipated approximately 40% of the PBS excitation, thus preventing over-excitation of PSII under yellow light conditions. It is hypothesized that State transitions in O2 evolving photosynthetic organisms may serve as the signal for change in the stoichiometry of photochemical complexes in response to light quality conditions.  相似文献   

13.
Photosystem I is one of the most fascinating membrane protein complexes for which a structure has been determined. It functions as a bio-solar energy converter, catalyzing one of the first steps of oxygenic photosynthesis. It captures the light of the sun by means of a large antenna system, consisting of chlorophylls and carotenoids, and transfers the energy to the center of the complex, driving the transmembrane electron transfer from plastoquinone to ferredoxin. Cyanobacterial Photosystem I is a trimer consisting of 36 proteins to which 381 cofactors are non-covalently attached. This review discusses the complex function of Photosystem I based on the structure of the complex at 2.5 Å resolution as well as spectroscopic and biochemical data.  相似文献   

14.
15.
We analyzed subunit interfaces in 315 homodimers with an X-ray structure in the Protein Data Bank, validated by checking the literature for data that indicate that the proteins are dimeric in solution and that, in the case of the “weak” dimers, the homodimer is in equilibrium with the monomer. The interfaces of the 42 weak dimers, which are smaller by a factor of 2.4 on average than in the remainder of the set, are comparable in size with antibody-antigen or protease-inhibitor interfaces. Nevertheless, they are more hydrophobic than in the average transient protein-protein complex and similar in amino acid composition to the other homodimer interfaces. The mean numbers of interface hydrogen bonds and hydration water molecules per unit area are also similar in homodimers and transient complexes. Parameters related to the atomic packing suggest that many of the weak dimer interfaces are loosely packed, and we suggest that this contributes to their low stability. To evaluate the evolutionary selection pressure on interface residues, we calculated the Shannon entropy of homologous amino acid sequences at 60% sequence identity. In 93% of the homodimers, the interface residues are better conserved than the residues on the protein surface. The weak dimers display the same high degree of interface conservation as other homodimers, but their homologs may be heterodimers as well as homodimers. Their interfaces may be good models in terms of their size, composition, and evolutionary conservation for the labile subunit contacts that allow protein assemblies to share and exchange components, allosteric proteins to undergo quaternary structure transitions, and molecular machines to operate in the cell.  相似文献   

16.
17.
Synchronkulturen einzelliger Grünalgen stellen ein ausgezeichnetes Untersuchungsmaterial zum Studium von Änderungen im Photosyntheseapparat ohne Anwendung externer Einflüsse dar. Vorausgegangene Untersuchungen legen es nahe, den begrenzenden Faktor für die Photosynthesekapazität im Elektronentransport zwischen PS II und PS I zu suchen. Die Regulation des Elektronentransportes zwischen PS'II und PS I während der Entwicklungszyklen von Scenedesmus und Chlamydomonas ist Gegenstand der vorliegenden Untersuchungen. Messungen der Poolgrößen des Plastochinons und der Cytochrome ergaben während der Entwicklungszyklen größere Differenzen für Chlamydomonas als für Scenedesmus. Jedoch waren die Differenzen nicht groß genug, um die Schwankungen in der Photosynthesekapazität zu erklären. Aus den Messungen konnte indirekt geschlossen werden, daß die Poolgröße des Quenchers Q während der Entwicklungszyklen konstant bleibt. Experimente mit den Photosynthesehemmstoffen DCMU und DBMIB an ganzen Zellen und photosynthetisch aktiven Partikeln führten zu dem Schluß, daß die Reoxidationskapazität von Plastochinon den geschwindigkeitsbestimmenden Schritt und somit die Regulation des nichtzyklischen Elektronentransports darstellt. Die Möglichkeit, daß während der Abnahme des nichtzyklischen Elektronentransports die Kapazität von PS I für zusätzliche zyklische Photophosphorylierung genutzt wird, wird diskutiert. Wir danken Herrn Prof. Dr. A. Trebst für die freundliche Überlassung von DBMIB und der Deutschen Forschungsgemeinschaft für apparative Unterstützung.  相似文献   

18.
Photodamage of Photosystem II (PSII) has been considered as an unavoidable and harmful reaction that decreases plant productivity. PSII, however, has an efficient and dynamically regulated repair machinery, and the PSII activity becomes inhibited only when the rate of damage exceeds the rate of repair. The speed of repair is strictly regulated according to the energetic state in the chloroplast. In contrast to PSII, Photosystem I (PSI) is very rarely damaged, but when occurring, the damage is practically irreversible. While PSII damage is linearly dependent on light intensity, PSI gets damaged only when electron flow from PSII exceeds the capacity of PSI electron acceptors to cope with the electrons. When electron flow to PSI is limited, for example in the presence of DCMU, PSI is extremely tolerant against light stress. Proton gradient (ΔpH)-dependent slow-down of electron transfer from PSII to PSI, involving the PGR5 protein and the Cyt b6f complex, protects PSI from excess electrons upon sudden increase in light intensity. Here we provide evidence that in addition to the ΔpH-dependent control of electron transfer, the controlled photoinhibition of PSII is also able to protect PSI from permanent photodamage. We propose that regulation of PSII photoinhibition is the ultimate regulator of the photosynthetic electron transfer chain and provides a photoprotection mechanism against formation of reactive oxygen species and photodamage in PSI.  相似文献   

19.
W.L. Butler  M. Kitajima 《BBA》1975,396(1):72-85
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at ?196 °C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5 mM MgCl2 which presumably changes the distribution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, α, being the fraction distributed to Photosystem I, and β, the fraction to Photosystem II, and a term for the rate constant for energy transfer from Photosystem II to Photosystem I,kT(II→I). The data, analyzed within the context of the model, permit a direct comparison of α andkT(II→I) in the absence (?) and presence (+) of Mg2+:α/?α+= 1.2andk/?T(II→I)k+T(II→I)= 1.9. If the criterion thatα + β = 1 is applied absolute values can be calculated: in the presence of Mg2+,a+ = 0.27 and the yield of energy transfer,φ+T(II→I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg2+? = 0.32 andφT(II→I) varied from 0.12 to 0.28.The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvseting chlorophyll of Photosystem II to Photosystem I,kT(II→I), and a transfer from the reaction centers of Photosystem II to Photosystem I,kt(II→I). In that caseα/?α+= 1.3,k/?T(II→I)k+T(II→I)= 1.3 andk/?t(II→I)k+(tII→I)= 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号