首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pan W  Kastin AJ 《Peptides》2007,28(12):2411-2434
The Tyr-MIF-1 family of small peptides has served a prototypic role in the introduction of several novel concepts into the peptide field of research. MIF-1 (Pro-Leu-Gly-NH2) was the first hypothalamic peptide shown to act “up” on the brain, not just “down” on the pituitary. In several situations, including clinical depression, MIF-1 exhibits an inverted U-shaped dose–response relationship in which increasing doses can result in decreasing effects. This tripeptide also can antagonize opiate actions, and the first report of such activity also correctly predicted the discovery of other endogenous antiopiate peptides. The tetrapeptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) not only shows antiopiate activity, but also considerable selectivity for the mu-opiate binding site. Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2) is an even more selective ligand for the mu receptor, leading to the discovery of two more Tyr-Pro tetrapeptides that have the highest specificity and affinity for this site. These are the endomorphins: endomorphin-1 is Tyr-Pro-Trp-Phe-NH2 and endomorphin-2 is Tyr-Pro-Phe-Phe-NH2. Tyr-MIF-1 proved, contrary to the then prevailing dogma, that peptides can be saturably transported across the blood–brain barrier by a quantifiable transport system. Unexpectedly, the Tyr-MIF-1 transporter is shared with Met-enkephalin. In the era in which it was doubtful whether a peripheral peptide could exert CNS effects, the Tyr-MIF-1 family of peptides also explicitly showed that they can exert more than one central action that persists longer than their half-lives in blood. These peptides clearly illustrate that the name of a peptide restricts neither its actions nor its conceptual implications.  相似文献   

2.
The blood-brain barrier (BBB) to endogenous albumin was studied in the olfactory bulb and pons of the senescence-accelerated prone (SAMP8) mouse and senescence-accelerated resistant (SAMR1) mouse strains by using a quantitative immunocytochemical procedure. Ultrathin sections of Lowicryl K4M-embedded samples were exposed to anti-mouse albumin antiserum followed by protein A-gold. Morphometric analysis of the electron micrographs revealed that in the olfactory bulb of both groups of animals, especially in the internal granular layer, some percentage of capillaries and slightly larger microvessels showed leakage of albumin. However, this percentage was larger in SAMP8 than in SAMR1 mice. In the pons, no significant differences in the permeability of blood microvessels were observed in both groups of mice, although a small fraction of capillaries in SAMP8 mice showed limited extravasation of blood plasma albumin. These observations indicate that the BBB in the olfactory bulb of control and SAMP8 mice is not as tight as it is in the pons or in the previously examined cerebral cortex. The labelling density of the neuropil was slightly higher than in the cerebral cortex, suggesting that albumin may have extravasated locally, in addition to having acces to the parenchyma of the olfactory bulb and pons from neighbouring areas supplied with the non-BBB-type of microvasculature. Furthermore, the data obtained suggest that there is limited (segmental), premature agerelated impairment of the BBB function in SAMP8 mice.  相似文献   

3.
Orexin-A and -B are neuropeptides mainly expressed in the lateral hypothalamic area (LHA). A role for orexins was first demonstrated in the regulation of feeding behaviour. Subsequently, the peptides have been implicated in the control of arousal. To date, two receptors for orexins have been characterised: orexin-1 and -2 receptors (OX-R1 and OX-R2). Both receptor genes are widely expressed within the rat brain. Particularly high expression of both receptor genes in certain hypothalamic and pons nuclei could be responsible for the orexigenic and arousal properties of the peptides. It is, however, presently unclear if one given receptor subtype or both subtypes may mediate a specific biological effect of orexins such as an increase in food intake. We have recently reported the distribution of the OX-R1 protein in the rat nervous system. In this study, we report the distribution of the OX-R2 protein in the rat brain and spinal cord using specific anti-peptide antisera raised against the OX-R2 protein. We also assess the expression profile of the OX-R2 gene in different brain regions. Immunolabelling for the OX-R2 protein was observed in brain regions that exhibited OX-R1-like immunoreactivity (cerebral neocortex, basal ganglia, hippocampal formation, and many other regions in the hypothalamus, thalamus, midbrain and reticular formation). Differences in the OX-R1 and OX-R2 distribution were, however, noticed in the hippocampus, hypothalamus and dorso-lateral pons.  相似文献   

4.
Early blood–brain barrier (BBB) disruption resulting from excessive neurovascular proteolysis by matrix metalloproteinases (MMPs) is closely associated with hemorrhagic transformation events in ischemic stroke. We have shown that normobaric hyperoxia (NBO) treatment reduces MMP-9 increase in the ischemic brain. The aim of this study was to determine whether NBO could attenuate MMP-9-mediated early BBB disruption following ischemic stroke. Rats were exposed to NBO (95% O2) or normoxia (30% O2) during 90-min middle cerebral artery occlusion, followed by 3-hour reperfusion. NBO-treated rats showed a significant reduction in Evan's blue extravasation in the ischemic hemisphere compared with normoxic rats. Topographically, Evan's blue leakage was mainly seen in the subcortical regions including the striatum, which was accompanied by increased gelatinolytic activity and reduced immunostaining for tight-junction protein, occludin. Increased gelatinolytic activities and occludin protein loss were also observed in isolated ischemic microvessels. Gel gelatin zymography identified that MMP-9 was the main enzymatic source in the cerebral microvessels. Incubation of brain slices or isolated microvessels with purified MMP-9 revealed specific degradation of occludin. Inhibition of MMP-9 by NBO or MMP-inhibitor, BB1101, significantly reduced occludin protein loss in ischemic microvessels. These results suggest that NBO attenuates early BBB disruption, and inhibition of MMP-9-mediated occludin degradation is an important mechanism for this protection.  相似文献   

5.
6.
J E Zadina  A J Kastin 《Peptides》1985,6(5):965-970
The interactions between Tyr-MIF-1, a brain peptide with antiopiate activity, and the beta-casomorphins, a family of peptides derived from milk protein with opiate activity, were investigated by in vitro binding assays. Specific binding of 125I-Tyr-MIF-1 to rat brain membranes was displaced with high potency by beta-casomorphin, morphiceptin, and the morphiceptin analog PL017 but not by the analgesically inactive analog D-Pro2-morphiceptin or by several other ligands for classical delta, kappa, or sigma opiate receptors. In addition, Tyr-MIF-1 displaced 125I-morphiceptin from its binding sites in brain with affinities similar to those of unlabeled morphiceptin and PL017. These results, which include the first demonstration of a binding site in brain for labeled morphiceptin, indicate that brain antiopiate Tyr-MIF-1 and the beta-casomorphin derived peptides with opiate activity may share a common binding site or cross-react at each other's site. This suggests a possible mechanism of action for endogenous antiopiate-opiate interactions.  相似文献   

7.
Peptides have been shown in both in vivo and in vitro systems to cross the blood-brain barrier (BBB) and so affect function on the side contralateral to their origin. Some peptides cross primarily by transmembrane diffusion, a nonsaturable mechanism largely dependent on the lipid solubility of the peptide. Other peptides are transported by saturable systems across the BBB. These transport systems can be in the CNS to blood direction, as in the cases of Tyr-MIF-1 and methionine enkephalin, in the blood to CNS direction, as in the case of peptide T, or bidirectional, as in the case of LHRH. Other factors that also affect the amount of peptide crossing the BBB include binding in blood, volume of distribution, enzymatic resistance, and half-time disappearance from the blood. An in vitro model of the BBB has been characterized and used to confirm that peptides can cross the BBB. Results with the model agree with those obtained in vivo and have been used to study the permeability of the BBB to peptides, the effect of peptides on BBB integrity, the cellular pathway peptides and proteins use to cross the BBB, and the ability of the BBB to degrade peptides. The in vivo and in vitro methods have been used together to develop halogenated enkephalin analogs that are enzymatically resistant, cross the BBB readily to accumulate in areas of the brain rich in opiate receptors, and are powerful analgesics. This shows how the principles elucidated for peptide passage across the BBB can be used to develop therapeutic peptides and how those peptides can be further tested in complementary in vivo and in vitro systems.  相似文献   

8.
Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) was previously isolated from bovine hypothalamus. We have now purified it from the parietal cortex of human brain tissue by gel filtration chromatography and four subsequent high performance liquid chromatographic steps. During isolation, the peptide content was followed by radioimmunoassay and compared with the elution of synthetic Tyr-MIF-1 in identical chromatographic systems. This extends evidence for the presence of Tyr-MIF-1 from bovine to human brain tissue and from hypothalamus to cortex.  相似文献   

9.
Abstract: Cationic amino acids are transported from blood into brain by a saturable carrier at the blood-brain barrier (BBB). The transport properties of this carrier were examined in the rat using an in situ brain perfusion technique. Influx into brain via this system was found to be sodium independent and followed Michaelis-Men-ten kinetics with half-saturation constants (Km) of 50–100 μM and maximal transport rates of 22–26 nmol/min/g for L-lysine, L-arginine, and L-ornithine. The kinetic properties matched that of System y+, the sodium-independent cationic amino acid transporter, the cDNA for which has been cloned from the mouse. To determine if the cloned receptor is expressed at the BBB, we assayed RNA from rat cerebral microvessels and choroid plexus for the presence of the cloned transporter mRNA by RNase protection. The mRNA was present in both cerebral microvessels and choroid plexus and was enriched in microvessels 38-fold as compared with whole brain. The results indicate that System y+ is present at the BBB and that its mRNA is more densely expressed at cerebral microvessels than in whole brain.  相似文献   

10.
Stroke is the third leading cause of death in the United States with high rates of morbidity among survivors. The search to fill the unequivocal need for new therapeutic approaches would benefit from unbiased proteomic analyses of animal models of spontaneous stroke in the prestroke stage. Since brain microvessels play key roles in neurovascular coupling, we investigated prestroke microvascular proteome changes. Proteomic analysis of cerebral cortical microvessels (cMVs) was done by tandem mass spectrometry comparing two prestroke time points. Metaprotein-pathway analyses of proteomic spectral count data were done to identify risk factor-induced changes, followed by QSPEC-analyses of individual protein changes associated with increased stroke susceptibility. We report 26 cMV proteome profiles from male and female stroke-prone and non-stroke-prone rats at 2 months and 4.5 months of age prior to overt stroke events. We identified 1,934 proteins by two or more peptides. Metaprotein pathway analysis detected age-associated changes in energy metabolism and cell-to-microenvironment interactions, as well as sex-specific changes in energy metabolism and endothelial leukocyte transmigration pathways. Stroke susceptibility was associated independently with multiple protein changes associated with ischemia, angiogenesis or involved in blood brain barrier (BBB) integrity. Immunohistochemical analysis confirmed aquaporin-4 and laminin-α1 induction in cMVs, representative of proteomic changes with >65 Bayes factor (BF), associated with stroke susceptibility. Altogether, proteomic analysis demonstrates significant molecular changes in ischemic cerebral microvasculature in the prestroke stage, which could contribute to the observed model phenotype of microhemorrhages and postischemic hemorrhagic transformation. These pathways comprise putative targets for translational research of much needed novel diagnostic and therapeutic approaches for stroke.  相似文献   

11.
Novel peptides with opiate activity, derived from endogenous sources (human and bovine casomorphins from milk, hemorphins from hemoglobin, and cytochrophins from mitochondrial cytochrome b), were tested for their ability to inhibit binding of the brain peptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) to its high affinity sites in rat brain. The order of potency in inhibiting binding of 125I-Tyr-MIF-1 was: hemorphin and bovine casomorphins greater than Tyr-MIF-1 greater than cytochrophins greater than human casomorphins. Naloxone and DAMGO were ineffective at inhibiting Tyr-MIF-1 binding. The results provide evidence that, in addition to their ability to bind to mu opiate receptors, these novel endogenous peptides with opiate activity and a peptide (Tyr-MIF-1) with antiopiate properties also bind to a non-opiate site labeled by Tyr-MIF-1. These sites could be involved in a balance between opiate and antiopiate peptides.  相似文献   

12.
Y Ida  M Tanaka  A Tsuda  S Tsujimaru  N Nagasaki 《Life sciences》1985,37(26):2491-2498
One-hour immobilization stress increased levels of the major metabolite of brain noradrenaline (NA), 3-methoxy-4-hydroxyphenyl-ethyleneglycol sulfate (MHPG-SO4), in nine brain regions of rats. Diazepam at 5 mg/kg attenuated the stress-induced increases in MHPG-SO4 levels in the hypothalamus, amygdala, hippocampus, cerebral cortex and locus coeruleus (LC) region, but not in the thalamus, pons plus medulla oblongata excluding the LC region and basal ganglia. The attenuating effects of the drug on stress-induced increases in metabolite levels in the above regions were completely antagonized by pretreatment with Ro 15-1788 at 5 or 10 mg/kg, a potent and specific benzodiazepine (BDZ) receptor antagonist. When given alone, Ro 15-1788 did not affect the increases in MHPG-SO4 levels. Behavioral changes observed during immobilization stress such as vocalization and defecation, were also attenuated by diazepam at 5 mg/kg and this action of diazepam was antagonized by Ro 15-1788 at 10 mg/kg, which by itself had no effects on these behavioral measurements. These findings suggest: (1) that diazepam acts via BDZ receptors to attenuate stress-induced increases in NA turnover selectively in the hypothalamus, amygdala, hippocampus, cerebral cortex and LC region and (2) that this decreased noradrenergic activity might be closely related to relief of distress-evoked hyperemotionality, i.e., fear and/or anxiety in animals.  相似文献   

13.
Abstract: Two samples of the peptide tyrosine-melanocyte-stimulating hormone release-inhibiting factor-1 (Tyr-MIF-1; Tyr-Pro-Leu-Gly-NH2) were tritiated on different amino acids (Tyr or Pro) and incubated together at 37°C with fractions of rat brain. The amount of intact tetrapeptide remaining was determined by HPLC. By 3 min, most of the Tyr-MIF-1 was degraded. Because similar amounts of [3H]Pro and [3H]Tyr appeared after incubation of the Tyr-MIF-1 peptides in brain homogenate, even as early as 30 s, examination of only this crude preparation would misleadingly indicate that Tyr-MIF-1 is not a precursor of melanocyte-stimulating hormone release-inhibiting factor-1 (MIF-1; Pro-Leu-Gly-NH2) in brain tissue. However, incubation of the mitochondrial fractions of brain under the same conditions resulted in more than three times as much [3H]Tyr being formed as [3H]Pro, with accompanying accumulation of MIF-1. Addition of excess MIF-1 to the mitochondrial fraction completely suppressed the formation of MIF-1 and more than doubled the amount of Tyr-MIF-1 remaining intact. When Tyr-MIF-1 tritiated only on the Tyr was added to the mitochondrial fraction, the main peaks of radioactivity appeared only at the positions of Tyr and Tyr-MIF-1, not at the position of Tyr-Pro. The results indicate that Tyr-MIF-1 can serve as a precursor of MIF-1 in brain mitochondria, an effect not evident when crude brain homogenate is used.  相似文献   

14.
Abstract: Local cerebral glucose utilization was measured in brain regions of awake Fischer-344 rats. Measurements were taken in 15 regions of 1-month-old rats, and 19 regions of 3-, 12-, 24-, and 34-month-old rats. Between 1 and 3 months, glucose utilization tended to increase in all brain regions; statistically significant increases occurred in seven regions. Between the ages of 3 and 12 months, glucose utilization decreased significantly in 12 regions. The greatest reductions (25% or more) occurred in the striatum, inferior colliculus, and pons, but the hypothalamus and thalamus, nucleus accumbens, and septum showed no statistically significant change. Cerebral glucose utilization did not change between 12 and 24 months or between 24 and 34 months of age. The results demonstrate a rise in cerebral glucose utilization with development from 1 to 3 months, a decline between 3 and 12 months, and a constancy in the second and third years that does not reflect reported senescence-associated neurochemical and morphological cerebral changes.  相似文献   

15.
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.  相似文献   

16.
A novel tetrapeptide, Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1), was purified from extracts of frontal cortex of human brain tissue by several consecutive reversed-phase high performance liquid chromatographic steps followed by a radioimmunoassay originally developed for Tyr-Pro-Leu-Gly-NH2 (Tyr-MIF-1). Sequencing, mass spectrometric analysis, and comparison of its chromatographic behavior with that of the synthetic peptide confirmed the structure. Like Tyr-MIF-1, which was previously isolated from human brain tissue, Tyr-W-MIF-1 can inhibit the binding of 3H-DAMGO (selective for mu opiate receptors) to rat brain and can act as an opiate agonist as well as antagonist. Tyr-W-MIF-1 was a more potent opiate agonist than Tyr-MIF-1, the free acid of Tyr-W-MIF-1, and the structurally related hemoglobin-derived opiate peptide hemorphin-4 (Tyr-Pro-Trp-Thr) in the guinea pig ileum. Each of these peptides acted as opiate antagonists on the ileum from morphine-tolerant guinea pigs; the free acid of Tyr-W-MIF-1 was the most potent antagonist in inhibiting the activity of DAMGO. The results demonstrate the presence in human brain of a new member of the Tyr-MIF-1 family of biologically active peptides.  相似文献   

17.
Glutathione content and glutamyl transpeptidase activity in different regions of adult female rat brain were determined at 10 and 30 min following intraventricular injection of LHRH and somatostatin. Hypothalamic glutathione levels were significantly elevated at 10 and 30 min after a single injection of a 0.1 micrograms dose of LHRH. On the contrary, glutathione levels significantly decreased in the hypothalamus, cerebral cortex and cerebellum at 10 and 30 min after 0.5 or 1 microgram dose. However, significant decrease in brain stem glutathione was evident at 30 min after 0.5 microgram and 10 min after the 1 microgram dose. Somatostatin at doses of 0.5 microgram and 1 microgram significantly decreased glutathione levels in all four brain regions both at 10 and 30 min following injection into the 3rd ventricle. Gamma-glutamyl transpeptidase activity in the hypothalamus and cerebral cortex was significantly elevated after intraventricular injection of LHRH. However, a significant increase in gamma-glutamyl transpeptidase activity in cerebellum and brain stem was seen only with 0.5 and 1 micrograms doses of LHRH. Somatostatin also significantly increased gamma-glutamyl transpeptidase activity in hypothalamus, cerebral cortex, brain stem and cerebellum. The decrease in glutathione levels with corresponding increase in gamma-glutamyl transpeptidase activity after intraventricular administration of LHRH and somatostatin suggests a possible interaction between glutathione and hypothalamic peptides.  相似文献   

18.
Tyr-MIF-1 is a representative of the MIF's family of endogenous peptides. It has been isolated from bovine hypothalamus and human parietal cortex that suggests its involvement in nociception. Tyr-MIF-1 can bind to the mu-receptors as well as to its specific non-opiate receptors in the brain. Data in the literature rise the idea that histamine (HA), a well known nociceptive agent, and Tyr-MIF-1 might have a common pathway in their effects on nociception. We tested that possibility by investigation of the combined action of diphenhydramine (DPH, an H (1) -antagonist) and Tyr-MIF-1 on nociception. The changes in the nociceptive effects were examined in the male Wistar rats by the Randall-Sellito paw-pressure (PP) and the tail-flick (TF) tests. Tyr-MIF-1 in a dose of 1 mg/kg exerted strong naloxone-reversible analgesic effects. DPH (100 microg/kg, i.p.) had an antinociceptive action, too. The co-administration of Tyr-MIF-1 and DPH enhanced the antinociceptive effect, as compared to DPH (PP) and to TYR-MIF-1 alone (TF). These effects were reversed when methylene blue (MB, 500 microg/rat) was applied 1h before the combination. However, naloxone (1 mg/kg, i.p.) only slightly affected the antinociceptive effect of DPH and TYR-MIF-1, compared to that of MB. The results obtained confirmed the hypothesis that cyclic nucleotides are involved in the realization of nociceptive effects of both HA and Tyr-MIF-1.  相似文献   

19.
Effect of latent iron deficiency on metal levels of rat brain regions   总被引:1,自引:0,他引:1  
Seven different metals (iron, copper, zinc, calcium, manganese, lead, and cadmium) were studied in eight different brain regions (cerebral cortex, cerebellum, corpus striatum, hypothalamus, hippocampus, midbrain, medulla oblongata, and pons) of weaned rats (21-d-old) maintained on an iron-deficient (18-20 mg iron/kg) diet for 8 wk. Iron was found to decrease in all the brain regions, except medulla oblongata and pons, in comparison to their respective levels in control rats, receiving an iron-sufficient (390 mg iron/kg) diet. Brain regions showed different susceptibility toward iron deficiency-induced alterations in the levels of various metals, such as zinc, was found to increase in hippocampus (19%, p less than 0.05) and midbrain (16%, p less than 0.05), copper in cerebral cortex (18%, p less than 0.05) and corpus striatum (16% p less than 0.05), calcium in corpus striatum (22%, p less than 0.01) and hypothalamus (17%, p less than 0.02), and manganese in hypothalamus (18%, p less than 0.05) only. Toxic metals lead and cadmium also increased in cerebellum (19%, p less than 0.05) and hippocampus (17%, p less than 0.05) regions, respectively. Apart from these changes, liver (64%, p less than 0.001) and brain (19%, p less than 0.01) nonheme iron contents were found to decrease significantly, but body, liver, and brain weights, packed cell volume, and hemoglobin content remained unaltered in these experimental rats. Rehabilitation of iron-deficient rats with an iron-sufficient diet for 2 wk recovered the values of zinc in both the hippocampus and mid-brain regions and calcium in the hypothalamus region only. Liver nonheme iron improved significantly; however, no remarkable effect was noticed in brain nonheme iron following rehabilitation. It may be concluded that latent iron deficiency produced alterations in various metal levels in different brain regions, and corpus striatum was found to be the most vulnerable region for such changes. It is also evident that brain regions were resistant for any recovery in their altered metallic levels in response to rehabilitation for 2 wk.  相似文献   

20.
Male Wistar rats were injected subcutaneously with either saline or naloxone, 1 mg/kg or 5 mg/kg, 10 min before exposure to 1-hour immobilization-stress. Control animals were sacrificed 70 min after respective injections. Levels of noradrenaline (NA) and its major metabolite, 3-methoxy-4-hydroxyphenylethyleneglycol sulfate (MHPG-SO4) in seven discrete brain regions and plasma corticosterone levels were fluorometrically determined. Immobilization stress caused significant elevations of plasma corticosterone which were not affected by pretreatment with naloxone. In the hypothalamus, amygdala and thalamus, immobilization-stress caused significant elevations of MHPG-SO4 levels, and naloxone at 5 mg/kg significantly enhanced these stress-induced elevations virtually without affecting the basal level of the metabolite. In contrast, in the hippocampus, cerebral cortex and pons plus medulla oblongata, MHPG-SO4 levels were elevated by stress, but were not affected by naloxone pretreatment. The effect of naloxone on stress-induced reductions of NA levels was unclear, since naloxone by itself (5 mg/kg) significantly decreased the amine levels in 5 of 7 brain regions examined. These results indirectly suggest that endogenous opioid peptides in the hypothalamus, amygdala and thalamus are partly involved in the stress process and attenuate increases in NA turnover induced by stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号