首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flavonoid content in leaves of Zostera marina and the endangered Zostera noltii, including mono- and disulphated flavonoids, from different sample localities were characterized. Seasonal variation of both individual and total flavonoid, as well as rosmarinic acid concentration were revealed. Minor amounts of luteolin 7-(6″-malonyl)glucoside (6) and apigenin7-(6″-malonyl)glucoside (11) were identified in Z. noltii for the first time. The total flavonoid content was found to be higher in Z. noltii than in Z. marina at most of the examined localities, and the qualitative flavonoid content was somewhat different in the two species. The quantitative variation of flavonoids and rosmarinic acid was found to be relatively consistent from year to year in Z. marina during a period of three years. The two species appeared though to have a different flavonoid production in the various seasons at the West coast. While Z. marina had the highest content in young leaves in May or June, with a markedly decrease from June to September and the lowest measured content in February, Z. noltii had the lowest measured flavonoid content in May/June followed by an increase from June to September and the highest measured content during wintertime in February. The observed seasonal differences may be related to the fact that Z. noltii is considered a perennial, thermophilous species, and the increasing flavonoid production during the colder seasons from September to March/April in Norway may serve as a protective function.  相似文献   

2.
以生长于广西大厂锡多金属矿上部(重金属胁迫区)和未受矿化或污染影响的矿区外围(对照区)的芒萁〔Dicranopteris pedata(Houtt.)Nakaike〕为实验材料,对芒萁叶片进行转录组高通量测序,并对组装得到的unigenes经NCBI官方非冗余蛋白质序列数据库(Nr)、NCBI官方非冗余核苷酸序列数据库(Nt)、KEGG直系同源数据库(KO)、Swiss-Prot数据库(Swiss-Prot)、蛋白质家族数据库(Pfam)、基因功能分类体系数据库(GO)和真核生物直系同源序列数据库(KOG)进行注释,同时分析重金属胁迫区和对照区芒萁叶片间的差异表达unigenes.结果显示:测序获得19.56 Gb clean data,其中,重金属胁迫区和对照区芒萁叶片分别含10.14和9.42 Gb clean data.组装得到的250582个unigenes中有120097个unigenes得到注释,占unigenes总数的47.93%.与对照区相比较,重金属胁迫区芒萁叶片中上调和下调差异表达unigenes分别有208和620个,其中120个上调差异表达unigenes注释为代谢过程,占所有上调差异表达unigenes的57.69%;285个下调差异表达unigenes注释为催化活性,占所有下调差异表达unigenes的45.97%.重金属胁迫区芒萁叶片中15个unigenes与重金属转运和耐受相关,其中c44988 g1和c84121 g1的相对表达量分别极显著和显著高于对照区.研究结果显示:芒萁响应自然金属矿化或矿山重金属污染的基因可以用于生物地球化学找矿和土壤重金属污染检测.  相似文献   

3.
元宝草挥发油化学成分的研究   总被引:7,自引:0,他引:7  
目的:首次研究元宝草叶及果实挥发油的成分,并比较它们的化学成分。方法:元宝草的叶和果实中的挥发油分别经同时蒸馏萃取的挥发油提取器提取(水蒸气蒸馏、乙酸乙酯萃取),通过气相色谱-质谱分析,结合计算机检索技术对其化学成分进行分离和鉴定,应用色谱峰面积归一化法测定各成分的相对百分含量。结果:从元宝草叶及果实中分别鉴定了30和44种成分,各占挥发油的总量的85.13%和63.26%。叶与果实挥发油的化学成分相差很大。  相似文献   

4.
Flavonoids detected from a model legume plant, Lotus japonicus accessions Miyakojima MG-20 and Gifu B-129, were profiled using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR/MS). Five flavonols and two anthocyanidins were detected as aglycones. LC-FTICR/MS facilitated simultaneous detection of 61 flavonoids including compounds that have not been reported previously. Chemical information of the peaks such as retention time, lambdamax, m/z value of the quasi-molecular ion, m/z value of MS/MS fragment ions, and relative intensity of MS/MS fragments was obtained, along with the molecular formulas and conjugate structures. Fourteen were completely identified by comparison with authentic compounds. The high accuracy of m/z values, being 0.081 ppm between observed and theoretical values, allowed prediction of molecular formulas of unknown compounds with the help of isotope peak information for determination of chemical composition. Based on a predicted elemental composition, the presence of a novel nitrogen-containing flavonoid was proposed. A comparison of flavonoid profiles in flowers, stems, and leaves demonstrated that the flowers yielded the most complex profile, containing 30 flower-specific flavonoids including gossypetin glycosides and isorhamnetin glycosides. A comparison of flavonoid profiles between MG-20 and B-129 grown under the same conditions revealed that the accumulation of anthocyanins was higher in B-129 than MG-20, particularly in the stem. Developmental changes in the flavonoid profiles demonstrated that kaempferol glycosides increased promptly after germination. In contrast, quercetin glycosides, predominant flavonoids in the seeds, were not detectable in growing leaves.  相似文献   

5.
Here, we provide the first report on flavonoid content in holm oak (Quercus ilex L.) leaves, analyzed by HPLC–MS/MS. Flavanols and flavonols were the predominant groups, although proanthocyanidins and many soluble tannins had a relevant presence in all leaf samples. Seasonal variation of flavonoids was determined in extracts from Q. ilex leaves during resprouting after a forest fire in two Mediterranean forests. Similar seasonal trends were observed over 2 years during the two main stress seasons (winter and summer). The most abundant flavonoid was the flavanol epicatechin, which showed similar values during the two seasons. Hexosides of the flavonols, quercetin, kaempferol and rhamnetin showed considerably higher content in winter, especially at the lowest temperatures. These variations in both forests are discussed on the basis of the chlorophyll fluorescence results obtained. Anthocyanins were found practically absent in mature leaves. Nutrient or water availability differences between sites or seasons were not related to changes in leaf flavonol-hexoside content.  相似文献   

6.
Eleven polyphenols, classified as flavonoid glycosides, flavonoid aglycones, and phenolic acids, are important bioactive components in the capitula of Coreopsis tinctoria (CCT). Nevertheless, their full pharmacokinetic profiles have not been demonstrated simultaneously. Therefore, a liquid chromatography – tandem mass spectrometry (LC/MS/MS) method was developed in the present work and used it to study the pharmacokinetics of these 11 compounds. We performed LC/MS/MS with a gradient mobile phase composed of water containing 0.1 % formic acid and acetonitrile containing 0.1 % formic acid on a Proshell 120 SB C18 column (2.1 mm×100 mm, 2.7 μm). We achieved a good chromatographic peak shape, resolution, and mass signal response, and multiple reaction monitoring facilitated the simultaneous detection of 11 analytes. In addition, we validated the selectivity, correlation coefficient, precision, extraction recovery, matrix effects, and stability of the LC/MS/MS method to be acceptable for 11 analytes in rat plasma. Subsequently, rats were orally administered with 50 % ethanol eluent of CCT (ECCT). Nine of 11 polyphenols were absorbed quickly (except for QCD and TCA), and their plasma levels peaked within 40 min. The exposure and Cmax values of flavonoid glycosides and phenolic acids were lower than those of flavonoid aglycones. This is the first report to demonstrate the pharmacokinetics of 11 polyphenols in ECCT, which may play an important role in future studies of the bioactive components of ECCT and their bioactive mechanisms.  相似文献   

7.
Flavonoids comprise a large and diverse group of polyphenolic plant secondary metabolites. In plants, flavonoids play important roles in many biological processes such as pigmentation of flowers, fruits and vegetables, plant-pathogen interactions, fertility and protection against UV light. Being natural plant compounds, flavonoids are an integral part of the human diet and there is increasing evidence that dietary polyphenols are likely candidates for the observed beneficial effects of a diet rich in fruits and vegetables on the prevention of several chronic diseases. Within the plant kingdom, and even within a single plant species, there is a large variation in the levels and composition of flavonoids. This variation is often due to specific mutations in flavonoid-related genes leading to quantitative and qualitative differences in metabolic profiles. The use of such specific flavonoid mutants with easily scorable, visible phenotypes has led to the isolation and characterisation of many structural and regulatory genes involved in the flavonoid biosynthetic pathway from different plant species. These genes have been used to engineer the flavonoid biosynthetic pathway in both model and crop plant species, not only from a fundamental perspective, but also in order to alter important agronomic traits, such as flower and fruit colour, resistance, nutritional value. This review describes the advances made in engineering the flavonoid pathway in tomato (Solanum lycopersicum). Three different approaches will be described; (I) Increasing endogenous tomato flavonoids using structural or regulatory genes; (II) Blocking specific steps in the flavonoid pathway by RNA interference strategies; and (III) Production of novel tomato flavonoids by introducing novel branches of the flavonoid pathway. Metabolite profiling is an essential tool to analyse the effects of pathway engineering approaches, not only to analyse the effect on the flavonoid composition itself, but also on other related or unrelated metabolic pathways. Metabolomics will therefore play an increasingly important role in revealing a more complete picture of metabolic perturbation and will provide additional novel insights into the effect of the introduced genes and the role of flavonoids in plant physiology and development.  相似文献   

8.
Hot pepper fruits (Capsicum annuum L.) var. Bronowicka Ostra have been studied with regard to content of flavonoids and other phenolics. Nine compounds were isolated from pericarp of pepper fruits by preparative HPLC. Their structures were identified by chromatographic (analytical HPLC) and spectroscopic (UV, NMR) techniques. Two of the identified compounds, trans-p-ferulylalcohol-4-O-(6-(2-methyl-3-hydroxypropionyl) glucopyranoside and luteolin-7-O-(2-apiofuranosyl-4-glucopyranosyl-6-malonyl)-glucopyranoside were found for the first time in the plant kingdom. Additionally compounds: trans-p-feruloyl-beta-D-glucopyranoside, trans-p-sinapoyl-beta- D-glucopyranoside, quercetin 3-O-alpha-L-rhamnopyranoside-7-O-beta-D-glucopyranoside, luteolin 6-C-beta-D-glucopyranoside-8-C-alpha-L-arabinopyranoside, apigenin 6-C-beta-D-glucopyranoside-8-C-alpha-L-arabinopyranoside and luteolin 7-O-[2-(beta-D-apiofuranosyl)-beta-D-glucopyranoside] were found for the first time in pepper fruit Capsicum annuum L.  相似文献   

9.
The effect of solar radiation on flavonoid biosynthesis was studied in bilberry (Vaccinium myrtillus L.) leaves. Expression of flavonoid pathway genes of bilberry was studied in the upper leaves of bilberry, exposed to direct sunlight, in the shaded leaves growing lower in the same plants and in fruits. Bilberry-specific digoxigenin–dUTP-labeled cDNA fragments of five genes from the general phenylpropanoid pathway coding phenylalanine ammonia-lyase and from the flavonoid pathway coding chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase were used as probes in gene expression analysis. Anthocyanins, catechins, proanthocyanidins, flavonols and hydroxycinnamic acids from the leaves and fruits were identified and quantified using high-performance liquid chromatography combined with a diode array detector. An increase in the expression of the studied flavonoid pathway genes was observed in leaves growing under direct sun exposure. Also, the concentrations of anthocyanins, catechins, flavonols and hydroxycinnamic acids were higher in the leaves exposed to direct sunlight. However, the concentration of polymeric procyanidins was lower in sun-exposed leaves, whereas that of prodelphinidins was slightly increased. The results give further support for the protective role of flavonoids and hydroxy cinnamic acids against high solar radiation in plants. Also, the roles of different flavonoid compounds as a defense against stress caused by sun exposure is discussed.Abbreviations ANS Anthocyanidin synthase - CHS Chalcone synthase - DFR Dihydroflavonol 4-reductase - F3H Flavanone 3-hydroxylase - GPD Glyceraldehyde-3-phosphate dehydrogenase - PAL Phenylalanine ammonia-lyase  相似文献   

10.
A rapid and accurate reversed-phase liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and validated for the quantitative determination of five flavonoid glycosides, icariin, epimedin A, epimedin B, epimedin C and hyperin in Herba Epimedii. Chromatographic separations were performed using a C(18) narrow-bore HPLC column; a mixture of an aqueous solution of ammonium formate (pH 4.0) and acetonitrile was used as the mobile phase, with compounds detected in the positive ion mode with multiple-reaction monitoring using a triple-quadrupole mass spectrometer equipped with an electrospray ionisation interface. This method for the determination of the reported flavonoid glycosides was accurate and reproducible, with a lower limit of quantication of 0.5 microg/mL. The standard calibration curves for the above-mentioned compounds were linear (r(2) > 0.998) over the concentration range 0.5-10.0 microg/mL. The relative standard deviations for intra- and inter-day precision over the concentration range for the flavonoid glycosides were lower than 7.8% with accuracy between 90.1 and 111.0%. The established method was successfully applied to the quality assessment of samples of Herba Epimedii collected from Korea and China.  相似文献   

11.
Flavonoids are important secondary plant metabolites believed to be present mainly in land plants. As phenolics were detected previously in microalgae using photometric assays, we wanted to investigate the nature of these phenolics and verify whether flavonoids are present. Therefore, in this study, we used state‐of‐the‐art ultra‐high performance liquid chromatography‐two‐dimensional mass spectrometry (UHPLC‐MS/MS) technology to investigate whether microalgae also contain flavonoids. For this, representative microalgal biomass samples from divergent evolutionary lineages (Cyanobacteria, Rhodophyta, Chlorophyta, Haptophyta, Ochrophyta) were screened for a set of carefully selected precursors, intermediates, and end products of the flavonoid biosynthesis pathways. Our data unequivocally showed that microalgae contain a wide range of flavonoids and thus must possess the enzyme pool required for their biosynthesis. Further, some of the microalgae displayed an intricate flavonoid pattern that is compatible with the established basic flavonoid pathway as observed in higher plants. This implies that the flavonoid biosynthesis pathway arose much earlier in evolution compared to what is generally accepted.  相似文献   

12.
银杏愈伤组织培养及其黄酮类化合物的测定(简报)   总被引:13,自引:0,他引:13  
采用银杏胚、胚乳及3个月苗龄的苗叶为外植体,在附加不同激素的培养基上诱导出愈伤组织,从愈伤组织中提取黄酮类化合物并测定其含量。结果表明,由胚诱导的愈伤组织中黄酮类化合物含量最高。  相似文献   

13.
The major anthocyanin of red leaves of Cichorium intybus has been identified as cyanidin 3-O-β-(6-O-malonyl)-d-glucopyranoside by fast atom bombardment mass spectrometry and NMR spectroscopy.  相似文献   

14.
Mandragora autumnalis Bertol . (Solanaceae family), synonym of M. officinalis Mill ., occurs in North Africa and grows natively in Northern and Central Tunisia, in humid to sub‐arid climates. The ripe fruits of mandrake are odiferous with a particular, indescribable, specific odor, shared, to a lesser extent, by the leaves and roots. We carried out an investigation of the essential oils (EOs) and of the aromatic volatiles emitted by fresh leaves, roots and ripe fruits of M. autumnalis growing wild in Central Tunisia. The EOs were obtained from freshly collected plant material by hydrodistillation, while the volatile emissions from the powdered M. autumnalis tissues were sampled by headspace solid phase microextraction (HS‐SPME); both types of samples were analyzed by gas chromatography‐mass spectrometry (GC/MS). Fifty‐one compounds representing 96.2–98.6 % of the total oil compositions were identified in the three tissues and belonged to different chemical classes specifically in 16 esters, 12 alcohols, 12 hydrocarbons, 6 ketones, 3 aldehydes and 3 acids. The main constituents were pentadecanoic acid (34.2 %) and hexadecanol (26.3 %). A total of 78 volatile compounds emanating from M. autumnalis tissues, representing 94.1–96.4 % of the total volatile compositions, were identified: 22 esters, 11 alcohols, 9 aldehydes, 14 ketones, 7 nitrogen, 10 hydrocarbons, 2 lactones, 1 sulfur and 2 ethers. Ethyl hexanoate (12.3 %) and 1,3‐butanediol (12.3 %) were at the highest relative percentages. This study characterizes and distinguishes M. autumnalis from Tunisia and attributes the compounds responsible for the intoxicating and particular odor of fruits. Chemosystematic of Mandragora autumnalis based on the identification of essential oils and headspace volatiles of each of its organ can be used to characterize this species according to its geographic distribution.  相似文献   

15.
The leaves and unripe and fully‐grown fruits of Schinus molle were collected from three geographical regions of Jordan: Amman (the Mediterranean), Madaba (Irano‐Turanean), and Sahab (Saharo‐Arabian). The hydrodistilled volatile oils of fresh and dried leaves and fruits were analyzed by gas chromatography‐mass spectrometry (GC/MS). The actual composition of the emitted volatiles was determined using Solid Phase Micro‐Extraction (SPME). α‐ and β‐Phellandrenes were the major components in all the analyzed samples. Quantitative differences were observed in the obtained essential oils (0.62–5.25 %). Additionally, cluster analysis was performed. Biologically, the antiproliferative activity of the essential oil, ethanol, and water extracts of the fruits and leaves was screened on Caco2, HCT116, MCF7, and T47D cell lines. The essential oil and ethanol extracts exhibited a dose‐dependent inhibition of cell growth with IC50 ranging between 21 and 65 μg/mL. The water extract did not exhibit any antiproliferative activity against the investigated cell lines.  相似文献   

16.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

17.
The new flavonoid glycoside kaempferol-3-O-alpha-L-rhamnopyranosyl(1-->2)-O-[alpha-L-rhamnopyranosyl(1-->6)]-O-beta-D-galactopyranoside-7-O-alpha-L-rhamnopyranoside was isolated together with (S)-zierin from the leaves of Zollernia ilicifolia (Fabaceae), a medicinal plant used as analgesic and antiulcerogenic effects in Brazilian Tropical Atlantic Rain Forest. The structures were established on the basis of 1H, 13C NMR and 2D NMR (COSY, HMBC, HMQC), UV, MS and IV spectra. The infusion of Zollernia ilicifolia was qualitatively compared to the infusion of the espinheiras-santas (Maytenus aquifolium and Maytenus ilicifolia) by HPLC-DAD.  相似文献   

18.
The biosynthesis of flavonoids and proanthocyanidins was studied in cultivated strawberry (Fragaria xananassa) by combining biochemical and molecular approaches. Chemical analyses showed that ripe strawberries accumulate high amounts of pelargonidin-derived anthocyanins, and a larger pool of 3',4'-hydroxylated proanthocyanidins. Activities and properties of major recombinant enzymes were demonstrated by means of in vitro assays, with special emphasis on specificity for the biologically relevant 4'- and 3',4'-hydroxylated compounds. Only leucoanthocyanidin reductase showed a strict specificity for the 3',4'-hydroxylated leucocyanidin, while other enzymes accepted either hydroxylated substrate with different relative activity rates. The structure of late flavonoid pathway genes, leading to the synthesis of major compounds in ripe fruits, was elucidated. Complex developmental and spatial expression patterns were shown for phenylpropanoid and flavonoid genes in fruits throughout ripening as well as in leaves, petals and roots. Presented results elucidate key steps in the biosynthesis of strawberry flavonoid end products.  相似文献   

19.
A study of extrafloral nectaries has been made in the Cucurbitaceae to ascertain their structure and assess their taxonomic potential. Nineteen species representing nine Old World genera and one New World genus were examined. These included Telfairia occidentalis, Telfairia pedata, Momordica charantia, Lagenaria siceraria, Citrullus lanatus, Luffa aegyptiaca, Cucurbita moschata and Trichosanthes cucumerina , which are of economic importance and cultivated in Nigeria for their leaves and/or fruits.
Observation of the regularity of ant and insect-visitors, along with tests for glucose and β-glucosidase enzymes, revealed the presence of extrafloral nectaries in nine species. Considerable variation exists in the distribution and morphology of nectaries between genera, especially in the tribe Benincaseae. The nutritional and ecological significance of the occurrence of extrafloral nectaries in Telfairia occidentalis is discussed.  相似文献   

20.
The dried fruits and seeds of Styphnolobium japonicum (L.) Schott (syn. Sophora japonica L.) are used in traditional Chinese medicine and known as Fructus Sophorae or Huai Jiao. The major flavonoids in these fruits and seeds were studied by LC-MS and other spectroscopic techniques to aid the chemical authentication of Fructus Sophorae. Among the flavonoids were two previously unreported kaempferol glycosides: kaempferol 3-O-β-glucopyranosyl(1 → 2)-β-galactopyranoside-7-O-α-rhamnopyranoside and kaempferol 3-O-β-xylopyranosyl(1 → 3)-α-rhamnopyranosyl(1 → 6)[β-glucopyranosyl(1 → 2)]-β-glucopyranoside, the structures of which were determined by NMR. Two further tetraglycosides were identified for the first time in S. japonicum as kaempferol 3-O-β-glucopyranosyl(1 → 2)[α-rhamnopyranosyl(1 → 6)]-β-glucopyranoside-7-O-α-rhamnopyranoside and kaempferol 3-O-β-glucopyranosyl(1 → 2)[α-rhamnopyranosyl(1 → 6)]-β-galactopyranoside-7-O-α-rhamnopyranoside; the latter was the main flavonoid in mature seeds. The chromatographic profiles of 27 recorded flavonoids were relatively consistent among fruits of similar ages collected from five trees of S. japonicum, and those of maturing unripe and ripe fruits were similar to a market sample of Fructus Sophorae, and thus provide useful markers for authentication of this herbal ingredient. The flower buds (Huai Mi) and flowers (Huai Hua) of S. japonicum (collectively Flos Sophorae) contained rutin as the main flavonoid and lacked the flavone glycosides that were present in flower buds and flowers of Sophora flavescens Ait., reported to be occasional substitutes for Flos Sophorae. The single major flavonoid in fruits of S. flavescens was determined as 3′-hydroxydaidzein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号