首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Propionate is an important intermediate of the degradation of organic matter in many anoxic environments. In methanogenic environments, due to thermodynamic constraints, the oxidation of propionate requires syntrophic cooperation of propionate-fermenting proton-reducing bacteria and H2-consuming methanogens. We have identified here microorganisms that were active in syntrophic propionate oxidation in anoxic paddy soil by rRNA-based stable-isotope probing (SIP). After 7 weeks of incubation with [13C]propionate (<10 mM) and the oxidation of ~30 μmol of 13C-labeled substrate per g dry weight of soil, we found that archaeal nucleic acids were 13C labeled to a larger extent than those of the bacterial partners. Nevertheless, both terminal restriction fragment length polymorphism and cloning analyses revealed Syntrophobacter spp., Smithella spp., and the novel Pelotomaculum spp. to predominate in “heavy” 13C-labeled bacterial rRNA, clearly showing that these were active in situ in syntrophic propionate oxidation. Among the Archaea, mostly Methanobacterium and Methanosarcina spp. and also members of the yet-uncultured “rice cluster I” lineage had incorporated substantial amounts of 13C label, suggesting that these methanogens were directly involved in syntrophic associations and/or thriving on the [13C]acetate released by the syntrophs. With this first application of SIP in an anoxic soil environment, we were able to clearly demonstrate that even guilds of microorganisms growing under thermodynamic constraints, as well as phylogenetically diverse syntrophic associations, can be identified by using SIP. This approach holds great promise for determining the structure and function relationships of further syntrophic or other nutritional associations in natural environments and for defining metabolic functions of yet-uncultivated microorganisms.  相似文献   

2.
The effects of the antimicrobial tylosin on a methanogenic microbial community were studied in a glucose‐fed laboratory‐scale anaerobic sequencing batch reactor (ASBR) exposed to stepwise increases of tylosin (0, 1.67, and 167 mg/L). The microbial community structure was determined using quantitative fluorescence in situ hybridization (FISH) and phylogenetic analyses of bacterial 16S ribosomal RNA (rRNA) gene clone libraries of biomass samples. During the periods without tylosin addition and with an influent tylosin concentration of 1.67 mg/L, 16S rRNA gene sequences related to Syntrophobacter were detected and the relative abundance of Methanosaeta species was high. During the highest tylosin dose of 167 mg/L, 16S rRNA gene sequences related to Syntrophobacter species were not detected and the relative abundance of Methanosaeta decreased considerably. Throughout the experimental period, Propionibacteriaceae and high GC Gram‐positive bacteria were present, based on 16S rRNA gene sequences and FISH analyses, respectively. The accumulation of propionate and subsequent reactor failure after long‐term exposure to tylosin are attributed to the direct inhibition of propionate‐oxidizing syntrophic bacteria closely related to Syntrophobacter and the indirect inhibition of Methanosaeta by high propionate concentrations and low pH. Biotechnol. Bioeng. 2011;108: 296–305. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
Inefficient syntrophic propionate degradation causes severe operating disturbances and reduces biogas productivity in many high-ammonia anaerobic digesters, but propionate-degrading microorganisms in these systems remain unknown. Here, we identified candidate ammonia-tolerant syntrophic propionate-oxidising bacteria using propionate enrichment at high ammonia levels (0.7–0.8 g NH3 L−1) in continuously-fed reactors. We reconstructed 30 high-quality metagenome-assembled genomes (MAGs) from the propionate-fed reactors, which revealed two novel species from the families Peptococcaceae and Desulfobulbaceae as syntrophic propionate-oxidising candidates. Both MAGs possess genomic potential for the propionate oxidation and electron transfer required for syntrophic energy conservation and, similar to ammonia-tolerant acetate degrading syntrophs, both MAGs contain genes predicted to link to ammonia and pH tolerance. Based on relative abundance, a Peptococcaceae sp. appeared to be the main propionate degrader and has been given the provisional name “Candidatus Syntrophopropionicum ammoniitolerans”. This bacterium was also found in high-ammonia biogas digesters, using quantitative PCR. Acetate was degraded by syntrophic acetate-oxidising bacteria and the hydrogenotrophic methanogenic community consisted of Methanoculleus bourgensis and a yet to be characterised Methanoculleus sp. This work provides knowledge of cooperating syntrophic species in high-ammonia systems and reveals that ammonia-tolerant syntrophic propionate-degrading populations share common features, but diverge genomically and taxonomically from known species.  相似文献   

4.
Summary Scanning electron microphotographs from the biofilm of a pilot scale anaerobic fluid-ized-bed reactor fed with acetate, propionate, and butyrate as carbon sources showed a predominance of filamentous organisms resembling Methanothrix sp. which could be isolated as an al-most pure culture as well as a Methanosarcina strain. Three syntrophic cultures, enriched in the medium of Boone and Xun, contained four or five microscopically distinguishable microorganisms, among them Methanospirillum sp., Methanothrix sp., Methanosarcina sp., and rods of acetogenic bacteria degrading propionate or butyrate effectively.  相似文献   

5.
Of four chlorinated guaiacols, tetrachloroguaiacol at 62 M inhibited acetate methanogenesis, the strongest decreasing activity by 50%. 4,5,6-Trichloroguaiacol, 4,5-dichloroguaiacol, and 4-chloroguaiacol showed 50% inhibition at 0.13, 0.32, and 1.50 mM, respectively. Degradation test results of volatile fatty acids (acetic, propionic, and butyric acid) by anaerobic digester sludge (stored 5 weeks) indicated that syntrophic butyrate degraders of this sludge were more sensitive to tetrachloroguaiacol than acetoclastic methanogens and syntrophic propionate degraders.  相似文献   

6.
The effects of two typical methanogenic inhibitors [2-bromoethanesulfonate (BES) and chloroform (CHCl3)] on the bacterial populations were investigated using molecular ecological techniques. Terminal restriction fragment length polymorphism analyses (T-RFLP) in combination with clone library showed that both the toxicants not only inhibited methanogenic activity but also considerably altered the bacterial community structure. Species of low % G + C Gram-positive bacteria (Clostridiales), high % G + C Actinomycetes, and uncultured Chloroflexi showed relatively greater tolerance of CHCl3, whereas the BES T-RFLP patterns were characterized by prevalence of Geobacter hydrogenophilus and homoacetogenic Moorella sp. In addition, due to indirect thermodynamic inhibition caused by high hydrogen partial pressures, the growth of obligately syntrophic acetogenic Syntrophomonas and Syntrophobacter was also affected by selective inhibition of methanogenesis. Interestingly, by comparing the fermentative intermediates detected in BES- and CHCl3-treated experiments, it was furthermore found that when methanogenesis is specifically inhibited, the syntrophic interaction between hydrogen-producing fatty acid degraders and hydrogen-utilizating homoacetogens seemed to be strengthened.  相似文献   

7.
内蒙古自治区二连盆地、海拉尔盆地是我国重要的煤层气产区,其中生物成因煤层气是煤层气的重要来源,但复杂物质转化产甲烷相关微生物群落结构及功能尚不清楚。【目的】研究煤层水中的微生物代谢挥发性脂肪酸产甲烷的生理特征及群落特征。【方法】以内蒙古自治区二连盆地和海拉尔盆地的四口煤层气井水作为接种物,分别添加乙酸钠、丙酸钠和丁酸钠厌氧培养;定期监测挥发性脂肪酸降解过程中甲烷和底物的变化趋势,应用高通量测序技术,分析原始煤层气井水及稳定期产甲烷菌液的微生物群落结构。【结果】除海拉尔盆地H303煤层气井微生物不能代谢丙酸外,其他样品均具备代谢乙酸、丙酸和丁酸产生甲烷的能力,其生理生态参数存在显著差异,产甲烷延滞期依次是乙酸<丁酸<丙酸;最大比产甲烷速率和底物转化效率依次是丙酸<乙酸<丁酸。富集培养后,古菌群落结构与煤层气井水的来源显著相关,二连盆地优势古菌为氢营养型产甲烷古菌Methanocalculus (相对丰度13.5%–63.4%)和复合营养型产甲烷古菌Methanosarcina (7.9%–51.3%),海拉尔盆地的优势古菌为氢营养型产甲烷古菌Methanobact...  相似文献   

8.
Thein vitro toxic effect of different volatile fatty acids (VFA) on Shigella dysenteriae was studied in pure culture. Volatile fatty acids viz., acetate, propionate, butyrate, valerate, caproate and heptanoate, exerted pH dependent toxic effect on the pathogen, with minimum inhibitory concentration in the range of 10–3000 mg l−1. The effect of high levels of VFA on S. dysenteriae was studied during anaerobic digestion of human night soil in an experimental digester with VFA level ≅ 9000 mg l−1 and pH ≅ 6.5. Another digester, with VFA level ≅ 700 mg l−1 and pH 7.4, served as the control. In the experimental digester, S. dysenteriae was completely eliminated within 18 days. In the control digester, a four-log reduction in pathogen count was achieved however the pathogen was not completely eliminated. T 90 values for the experimental and control digesters were 2.2 and 3.7 days respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This study examined whether the abundance and expression of microbial 16S rRNA genes were associated with elemental concentrations and substrate conversion biokinetics in 20 full‐scale anaerobic digesters, including seven municipal sewage sludge (SS) digesters and 13 industrial codigesters. SS digester contents had higher methane production rates from acetate, propionate and phenyl acetate compared to industrial codigesters. SS digesters and industrial codigesters were distinctly clustered based on their elemental concentrations, with higher concentrations of NH3‐N, Cl, K and Na observed in codigesters. Amplicon sequencing of 16S rRNA genes and reverse‐transcribed 16S rRNA revealed divergent grouping of microbial communities between mesophilic SS digesters, mesophilic codigesters and thermophilic digesters. Higher intradigester distances between Archaea 16S rRNA and rRNA gene profiles were observed in mesophilic codigesters, which also had the lowest acetate utilization biokinetics. Constrained ordination showed that microbial rRNA and rRNA gene profiles were significantly associated with maximum methane production rates from acetate, propionate, oleate and phenyl acetate, as well as concentrations of NH3‐N, Fe, S, Mo and Ni. A co‐occurrence network of rRNA gene expression confirmed the three main clusters of anaerobic digester communities based on active populations. Syntrophic and methanogenic taxa were highly represented within the subnetworks, indicating that obligate energy‐sharing partnerships play critical roles in stabilizing the digester microbiome. Overall, these results provide new evidence showing that different feed substrates associate with different micronutrient compositions in anaerobic digesters, which in turn may influence microbial abundance, activity and function.  相似文献   

10.
The effect of sulfate on the anaerobic breakdown of mixtures of acetate, propionate and butyrate at three different sulfate to fatty acid ratios was studied in upflow anaerobic sludge blanket reactors. Sludge characteristics were followed with time by means of sludge activity tests and by enumeration of the different physiological bacterial groups. At each sulfate concentration acetate was completely converted into methane and CO2, and acetotrophic sulfate-reducing bacteria were not detected. Hydrogenotrophic methanogenic bacteria and hydrogenotrophic sulfate-reducing bacteria were present in high numbers in the sludge of all reactors. However, a complete conversion of H2 by sulfate reducers was found in the reactor operated with excess sulfate. At higher sulfate concentrations, oxidation of propionate by sulfate-reducing bacteria became more important. Only under sulfate-limiting conditions did syntrophic propionate oxidizers out-compete propionate-degrading sulfate reducers. Remarkably, syntrophic butyrate oxidizers were well able to compete with sulfate reducers for the available butyrate, even with an excess of sulfate. Correspondence to: A. Visser  相似文献   

11.
In order to investigate the role of microbial community in aquatic ecology and biogeochemical cycles, the bacterial community in crab ponds was investigated and the effects of aeration and season on the bacterial community were also assessed. Total DNAs from the water samples were amplified with universal primers and the amplicons were then resolved by denaturing gradient gel electrophoresis. Bands from the resulting profiles were excised and sequenced. Cluster analysis of the resulting profiles showed that the microbial community was affected by aeration and season. The microbial community between the surface and bottom of the water was very similar. A total of fifteen bands were obtained in this study. Three of them were 91–99% similar to uncultured bacterium clones. Three were 95–99% similar to uncultured Verrucomicrobia bacteria. Three were 97–100% similar to Actinobacterium sp.. Two were similar to Candidatus Limnoluna rubra with similarity 96 and 99%, respectively. Four were 99% similar to Rhodococcus sp., 100% similar to Sporosarcina sp., 100% similar to Stenotrophomonas sp., and 98% similar to Hydrogenophaga sp., respectively. The concentrations of dissolved oxygen, total nitrogen, total phosphorous, nitrite, and ammonia and pH values were significantly affected by season while only the pH value and the concentrations of dissolved oxygen and total nitrogen were significantly affected by aeration.  相似文献   

12.
The composition and dynamics of the propionate degrading community in a propionate-fed upflow anaerobic sludge bed (UASB) reactor with sludge originating from an alcohol distillery wastewater treating UASB reactor was studied. The rather stable propionate degrading microbial community comprised relatives of propionate degrading Syntrophobacter spp., the hydrogen and formate consuming Methanospirillum hungatei and the acetate consuming Methanosaeta concilii. The effect of the long-term absence of molybdenum, tungsten and selenium from the feed to the UASB reactor on microbial community dynamics and activity was examined. Measurements for metal concentrations of the sludge and specific methanogenic activity tests with supplied molybdenum, tungsten and selenium were found to be unsuitable to detect the potential limitation of the microbial activity of the UASB sludge by these trace metals. During a long-term absence of molybdenum, tungsten and selenium from the feed to the UASB reactor, the methanogenic activity decreased while relatives of Smithella propionica and Pelotomaculum spp. competed with Syntrophobacter spp. for propionate consumption.  相似文献   

13.
Environmental contamination with selenium is a major health concern. A few bacterial strains have been isolated that can transform toxic selenite to non-toxic elemental selenium only at low concentrations (0.001–150 mM) in recent past. We have previously reported isolation and characterization of few selenite-tolerant bacterial strains. These strains were found to be resistant to selenite at (300–600 mM) concentrations. In the present study we have characterized some physiological adaptations of strains Enterobacter sp. AR-4, Bacillus sp. AR-6 and Delftia tsuruhatensis AR-7 during exposure to higher concentration of selenite under aerobic and anaerobic environments. Adaptive responses are largely associated with alteration of cell morphology and change in total cellular fatty acid composition. Interestingly, electron microscopy studies revealed substantial decrease in cell size and intracellular deposition of Se0 crystals when reduction is carried out under aerobic conditions. On the other hand, cell size increased with adhesion of Se0 on cell surface during anaerobic reduction. Fatty acid composition analysis demonstrated selective increase in saturated and cyclic fatty acids and decrease in unsaturated ones during aerobic transformation. Changes observed during anaerobic transformation were in surprising contrast as indicated by total absence of saturated and cyclic fatty acids. Results presented here provide evidences for putative occurrence of two distinct mechanisms involved in tolerance towards higher concentrations of selenite utilization under aerobic and anaerobic conditions. Further, prior exposure to higher concentration of Se+4 enabled rapid adaptation indicating role of inducible system in adaptation.  相似文献   

14.
Samples from an oil storage tank (resident temperature 40 to 60 °C), which experienced unwanted periodic odorous gas emissions, contained up to 2,400/ml of thermophilic, lactate-utilizing, sulfate-reducing bacteria. Significant methane production was also evident. Enrichments on acetate gave sheathed filaments characteristic of the acetotrophic methanogen Methanosaeta thermophila of which the presence was confirmed by determining the PCR-amplified 16S rDNA sequence. 16S rDNA analysis of enrichments, grown on lactate- and sulfate-containing media, indicated the presence of bacteria related to Garciella nitratireducens, Clostridium sp. and Acinetobacter sp. These sulfidogenic enrichments typically produced sulfide to a maximum concentration of 5–7 mM in media containing excess lactate and 10 mM sulfate or thiosulfate. Both the production of sulfide and the consumption of acetate by the enrichment cultures were inhibited by low concentrations of nitrite (0.5–1.0 mM). Hence, addition of nitrite may be an effective way to prevent odorous gas emissions from the storage tank.  相似文献   

15.
Sulfate reduction by a syntrophic propionate-oxidizing bacterium   总被引:3,自引:0,他引:3  
The syntrophic propionate-oxidizing bacterium MPOB was able to grow in the absence of methanogens by coupling the oxidation of propionate to the reduction of sulfate. Growth on propionate plus sulfate was very slow (=0.024 day–1). An average growth yield was found of 1.5 g (dry weight) per mol of propionate. MPOB grew even slower than other sulfate-reducing syntrophic propionate-oxidizing bacteria. The growth rates and yields of strict sulfate-reducing bacteria (Desulfobulbus sp.) grown on propionate plus sulfate are considerably higher.  相似文献   

16.
A new strain of syntrophically propionate-oxidizing fermenting bacteria, strain KoProp1, was isolated from anoxic sludge of a municipal sewage plant. It oxidized propionate or lactate in cooperation with the hydrogen- and formate-utilizingMethanospirillum hungatei and grew as well in pure culture without a syntrophic partner with propionate or lactate plus sulfate as energy source. In all cases, the substrates were oxidized stoichiometrically to acetate and CO2, with concomitant formation of methane or sulfide. Cells formed gas vesicles in the late growth phase and contained cytochromesb andc, a menaquinone-7, and desulforubidin, but no desulfoviridin. Enzyme measurements in cell-free extracts indicated that propionate was oxidized through the methylmalonyl CoA pathway. Protein pattern analysis by SDS-PAGE of cell-free extracts showed that strain KoProp1 differs significantly fromSyntrophobacter wolinii and from the propionate-oxidizing sulfate reducerDesulfobulbus propionicus. 16S rRNA sequence analysis revealed a significant resemblance toS. wolinii allowing the assignment of strain KoProp1 to the genusSyntrophobacter as a new species,S. pfennigii.  相似文献   

17.
From marine and freshwater mud samples strictly anaerobic, Gram-positive, sporeforming bacteria were isolated which oxidized fatty acids in obligately syntrophic association with H2-utilizing bacteria. Even-numbered fatty acids with up to 10 carbon atoms were degraded to acetate and H2, odd-numbered fatty acids with up to 11 carbon atoms including 2-methylbutyrate were degraded to acetate, propionate and H2. Neither fumarate, sulfate, thiosulfate, sullur, nor nitrate were reduced. A marine isolate, strain CuCal, is described as type strain of a new species, Clostridium bryantii sp. nov.  相似文献   

18.
The influence of low temperature (5–29 °C) on the methanogenic activity of non-adapted digested sewage sludge and on temperature/leachate-adapted biomass was assayed by using municipal landfill leachate, intermediates of anaerobic degradation (propionate) and methane precursors (acetate, H2/CO2) as substrates. The temperature dependence of methanogenic activity could be described by Arrhenius-derived models. However, both substrate and adaptation affected the temperature dependence. The adaptation of biomass in a leachate-fed upflow anaerobic sludge-blanket reactor at approximately 20 °C for 4 months resulted in a sevenfold and fivefold increase of methanogenic activity at 11 °C and 22 °C respectively. Both acetate and H2/CO2 were methanized even at 5 °C. At 22 °C, methanogenic activities (acetate 4.8–84 mM) were 1.6–5.2 times higher than those at 11 °C. The half-velocity constant (K s) of acetate utilization at 11 °C was one-third of that at 22 °C while a similar K i was obtained at both temperatures. With propionate (1.1–5.5 mM) as substrate, meth‐anogenic activities at 11 °C were half those at 22 °C. Furthermore, the residual concentration of the substrates was not dependent on temperature. The results suggest that the adaptation of biomass enables the achievement of a high treatment capacity in the anaerobic process even under psychrophilic conditions. Received: 23 December 1996 / Received last revision: 18 June 1997 / Accepted: 23 June 1997  相似文献   

19.
A syntrophic consortium was enriched in a basal medium containing cinnamate as the carbon and energy source. It was found to consist of three morphologically distinct microbes, viz., a short, rod-shaped, non-motile bacterium with distinctly pointed ends, Papillibacter cinnamivorans; a rod-shaped, motile bacterium with rounded ends, Syntrophus sp.; and a methanoarchaeon, Methanobacterium sp. This methanogen was then replaced by a collection strain of Methanobacterium formicicum. A syntrophic interdependency of the three partners of the consortium was observed during growth on cinnamate. In the presence of bromoethanesulfonic acid (BESA), cinnamate was transformed to benzoate, whereas under methanogenic conditions without BESA, cinnamate was first transformed to benzoate via β-oxidation and subsequently completely degraded into acetate, CH4, and CO2. Papillibacter cinnamivorans was responsible for benzoate production from cinnamate, whereas a syntrophic association between Syntrophus sp. and the methanogen degraded benzoate to acetate, CH4, and CO2. A new anaerobic degradation pathway of cinnamate into benzoate via β-oxidation by a pure culture of P. cinnamivorans is proposed. Received: 27 December 2001 / Accepted: 28 March 2002  相似文献   

20.
Solid waste from anaerobic digestion of litter from the commercial production of broiler chickens has limited use as fertilizer. Its disposal is a major problem for digester operators who are seeking alternative use for anaerobic digester solids, also referred to as solid waste (SW). The use of SW as substrates for the cultivation of Pleurotus ostreatus strain MBFBL400 was investigated. Lignocellulolytic enzymes activity, substrate utilization, and mushroom yield were evaluated in ten different substrate combinations (SCs) containing varying amounts of solid waste, wheat straw, and millet. Nutritional content of mushrooms produced on the different substrates was also determined. Substrates containing 70–80% wheat straw, 10–20% SW, and 10–20% millet were found to produce the highest mushroom yield (874.8–958.3 g/kg). Loss of organic matter in all SCs tested varied from 45.8% to 56.2%, which had positive correlation with the biological efficiency. Laccase, peroxidase, and carboxymethylcellulase (CMCase) activities were higher before fruiting, whereas xylanase showed higher activities after mushroom fruiting. SW increased the nutritional content in mushrooms harvested, and the combination of wheat straw and SW with millet significantly improved mushroom yield. Our findings demonstrated the possibility of utilizing anaerobic digester solids in mushroom cultivation. The application of SW as such could improve the financial gains in the overall economy of anaerobic digester plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号