首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric (CA) and isocitric (ICA) acids, triggered by growth limitation caused by different factors and an excess of carbon source. Depending on the carbon source used, Y. lipolytica strains produce a mixture of CA and ICA in a characteristic ratio. To examine whether the CA/ICA product ratio can be influenced by gene-dose-dependent overexpression or by disruption of the isocitrate lyase (ICL)-encoding gene ICL1, recombinant Y. lipolytica strains were constructed, which harbour multiple ICL1 copies or a defective icl1 allele. The high-level expression of ICL in ICL1 multicopy integrative transformants resulted in a strong shift of the CA/ICA ratio into direction of CA. On glycerol, glucose and sucrose, the ICA proportion decreased from 10–12% to 3–6%, on sunflower oil or hexadecane even from 37–45% to 4–7% without influencing the total amount of acids (CA and ICA) produced. In contrast, the loss of ICL activity in icl1-defective strains resulted in a moderate 2–5% increase in the ICA proportion compared to ICL wild-type strains on glucose or glycerol.  相似文献   

2.
The yeast Yarrowia lipolytica is capable of high-intensity synthesis (overproduction) of citric (CA) and isocitric (ICA) acids under nitrogen limitation. The ratio of the synthesized acids depends on the producing strains used and the expression level of the aconitate hydratase gene (ACO1). Recombinant variants with overexpression of the multicopy ACO1 gene have been obtained based on the natural ICA-producing strain Y. lipolytica 672. A recombinant strain Y. lipolytica 20, which has an isocitrate-citrate ratio shifted towards ICA (2.3: 1) as compared to the parental strain (1.1: 1), has been selected. Culturing of the 20 variant in a 10 L reactor has resulted in the production of 72.6 g/L of ICA and 29.0 g/L of CA with a ratio of 2.5: 1. This makes it possible to regard Y. lipolytica 20 as a promising producer for the development of an industrial process for isocitrate production.  相似文献   

3.
The yeast Yarrowia lipolytica is able to secrete high amounts of several organic acids under conditions of growth limitation and carbon source excess. Here we report the production of citric acid (CA) in a fed-batch cultivation process on sucrose using the recombinant Y. lipolytica strain H222-S4(p67ICL1) T5, harbouring the invertase encoding ScSUC2 gene of Saccharomyces cerevisiae under the inducible XPR2 promoter control and multiple ICL1 copies (10–15). The pH-dependent expression of invertase was low at pH 5.0 and was identified as limiting factor of the CA-production bioprocess. The invertase expression was sufficiently enhanced at pH 6.0–6.8 and resulted in production of 127–140 g l−1 CA with a yield Y CA of 0.75–0.82 g g−1, whereas at pH 5.0, 87 g l −1 with a yield Y CA of 0.51 gg−1 were produced. The CA-productivity Q CA increased from 0.40 g l −1 h−1 at pH 5.0 up to 0.73 g l −1 h−1 at pH 6.8. Accumulation of glucose and fructose at high invertase expression level at pH 6.8 indicated a limitation of CA production by sugar uptake. The strain H222-S4(p67ICL1) T5 also exhibited a gene–dose-dependent high isocitrate lyase expression resulting in strong reduction (<5%) of isocitric acid, a by-product during CA production.  相似文献   

4.
α,ω-Dicarboxylic acid accumulation from alkanes and alkane degradation intermediates was investigated using Yarrowia lipolytica wild type strain W29 as well as a double, a triple and a quadruple POX-deleted strains. Six genes, POX1 through POX6, encode six acyl-CoA oxidase isozymes in Y. lipolytica. All the strains accumulated dodecanedioic acid (5–20 mg ml−1) from the diterminal functionalised 1,12-dodecane diol and 12-hydroxdodecanoic acid. The quadruple-deleted strain was the only strain that was able to accumulate dioic acids from C16 alkanol and monocarboxylic acid as well as from C12, C14 and C16 alkanes (maximum 8 mg ml−1 from dodecane).  相似文献   

5.
Methyl oleate was used as a primary carbon source and as an alternative inducer for the production of an extracellular lipase, Lip2, in Y. lipolytica strain LgX64.81 grown in a 20-l bioreactor. The lipase-encoding gene, LIP2, was investigated during culture on methyl oleate using a pLIP2LacZ reporter fusion and we provide evidence for the involvement of methyl oleate in its regulation. Revisions requested 7 July 2005; Revisions received 30 August 2005  相似文献   

6.
Promoters of the genesG3P, ICL1, POT1, POX1, POX2 andPOX5 of the yeastY. lipolytica were studied in respect to their regulations and activities during growth on different carbon sources. The aim of this study was to select suitable promoters for high expression of heterologous genes in this yeast. For this purpose the promoters were fused with the reporter genelacZ ofE. coli and integrated as single copies into the genome ofY. lipolytica strain PO1d. The measurement of expressed activities of β-galactosidase revealed thatpICL1, pPOX2 andpPOT1 are the strongest regulable promoters available forY. lipolytica, at present.pPOX2 andpPOT4 were highly induced during growth on oleic acid and were completely repressed by glucose and glycerol.pICL1 was strongly inducible by ethanol besides alkanes and fatty acids, however, not completely repressible by glucose or glycerol. Ricinoleic acid methyl ester appeared as a very strong inducer forpPOT1 andpPOX2, in spite of that it inhibited growth ofY. lipolytica transformants.  相似文献   

7.
A wild type strain A-101 of Y. lipolytica and its three acetate-negative mutants (Wratislavia 1.31, Wratislavia AWG7, and Wratislavia K1) were compared for the production of citric acid from glucose and glycerol (pure and crude) in batch cultures. The substrates were used either as single carbon sources or as mixtures of glucose and pure or crude glycerol. The kinetic parameters, i.e., the volumetric citric acid production rate and yield obtained in the study show that the Wratislavia 1.31 and Wratislavia AWG7 strains produced the highest amount of citric acid from glycerol, with a yield from 0.40 to 0.53 g g−1. This substrate was found to be a better carbon source for the biosynthesis of citric acid than glucose. The results obtained with the same strains have shown low content of isocitric acid and polyols, such as erythritol and mannitol. Y. lipolytica A-101 strain produced the highest amount of isocitric acid, from 13.8 to 21% isocitric acid in the sum of citric acids. However, the highest concentrations of erythritol were found in cultures with Y. lipolytica Wratislavia K1, from 18.1 to 30 g l−1, for glucose and pure glycerol, respectively.  相似文献   

8.
Production of d S-threo-isocitric acid (ICA) by yeast meets serious difficulties since it is accompanied by a simultaneous production of citric acid (CA) in significant amounts that reduces the yield of desired product. In order to develop an effective process of ICA production, 60 yeast strains of different genera (Candida, Pichia, Saccharomyces, Torulopsis, and Yarrowia) were tested for their ability to produce ICA from rapeseed oil; as a result, wild-type strain Yarrowia lipolytica VKM Y-2373 and its mutant Y. lipolytica 704-UV4-A/NG50 were selected as promising ICA producers. The effects of temperature, pH, aeration, and concentrations of rapeseed oil, iron, and itaconic acid on ICA production by selected strains were studied. Under optimal conditions (pH 6.0; aeration 50–55 %; rapeseed oil concentration of 20–60 gl?1, iron ion concentration of 1.2 mg l?1, and itaconic acid amount of 30 mM), selected strains of Y. lipolytica produced predominantly ICA with a low amount of a by-product, CA.  相似文献   

9.
The asymmetric bio-reduction of 4-chloro-acetoacetic-acid-ethyl-ester to the pharmaceutical building block (S)-4-chloro-3-hydroxybutanoate-ethyl-ester requires the utilization of an enantioselective robust biocatalyst. Some of the natural Saccharomyces cerevisiae strains, isolated from Mount Carmel National Park in Israel, were characterized as resistant to environmental stress. Nevertheless, these strains showed relatively low enantiomeric-excess (ee), while a laboratory strain, Y103, exhibited a selectivity of 98% ee. The enantioselective lab strain was crossed with the multi-stress resistant environmental isolate (93% ee) followed by backcross with Y103, to subsequently obtain a haploid offspring of backcross-1, exhibiting both high multi-stress resistance and high enantioselectivity (98% ee). Introducing osmotic (1 M NaCl), oxidative (0.6 mM H2O2) and thermal stress (44°C) to growing cultures of the enantioselective parent, resulted in a decrease of 24–32% in specific activity, while the enantioselectivity of the stress-resistant parent decreased by 4–12% ee. Unlike its original parental strains, the new strain maintained constant specific activity and enantioselectivity when introduced to the various stress factors. This work shows that the classic introgression method, can serve as a viable approach for creating a robust enantioselective biocatalyst, designed for industrial production of chiral compounds.  相似文献   

10.
The Acyl-CoA oxidase (AOX) isozymes catalyze the first steps of peroxisomal β-oxidation, which is important for the degradation of fatty acids. Using conserved blocks in previously identified yeastPOX genes encoding AOXs, the authors have shown that fivePOX genes are present in the yeastYarrowia lipolytica. These genes show approx 63% identity among themselves, and 42% identity with thePOX genes from other yeasts. Mono-disruptedY. lipolytica strains were constructed using a variation of the sticky-end polymerase chain reaction method. AOX activity in the mono-disrupted strains revealed that a long-chain oxidase is encoded by thePOX2 gene and a short-chain oxidase by thePOX3 gene.  相似文献   

11.
A novel Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, aerobic bacterium, designated strain JSM 078120T, was isolated from sea water collected from a tidal flat of Naozhou Island, South China Sea. Growth occurred with 1–15% (w/v) total salts (optimum, 2–4%), at pH 6.0–10.0 (optimum, pH 7.5) and at 4–35°C (optimum, 25–30°C). The major cellular fatty acids were C18:1 ω9c, C16:0, C12:0 3-OH and C16:1 ω7c. The predominant respiratory quinone was ubiquinone Q-9, and the genomic DNA G + C content was 60.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 078120T should be assigned to the genus Marinobacter, being related most closely to the type strains of Marinobacter segnicrescens (sequence similarity 98.2%), Marinobacter bryozoorum (97.9%) and Marinobacter gudaonensis (97.6%). The sequence similarities between the novel isolate and the type strains of other recognized Marinobacter species ranged from 96.7 (with Marinobacter salsuginis) to 93.3% (with Marinobacter litoralis). The levels of DNA–DNA relatedness between strain JSM 078120T and the type strains of M. segnicrescens, M. bryozoorum and M. gudaonensis were 25.3, 20.6 and 18.8%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078120T represents a novel species of the genus Marinobacter, for which the name Marinobacter zhanjiangensis sp. nov. is proposed. The type strain is JSM 078120T (= CCTCC AB 208029T = DSM 21077T = KCTC 22280T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078120T is FJ425903.  相似文献   

12.
A novel Gram-negative, slightly halophilic, catalase- and oxidase-positive, obligately aerobic bacterium, strain YIM-C248T, was isolated from a sediment sample collected from a salt-lake in the Qaidam Basin in Qinghai, north-west China. Cells were non-sporulating short rods, occurring singly or as doublets, motile with peritrichous flagella. Growth occurred with 1–15% (w/v) NaCl [optimum 2–4% (w/v) NaCl], at pH 6.0–10.0 (optimum pH 7.5) and at 4–35°C (optimum 25–30°C). The major cellular fatty acids were C18:1 ω7c, C12:0 3-OH, cyclo C19:0 ω8c, C16:0 and C16:1. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM-C248T should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range of 92.5–97.5%. The combination of phylogenetic analysis, DNA–DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain YIM-C248T represents a new species of the genus Halomonas, for which the name Halomonas sediminis sp. nov. is proposed, with YIM-C248T (=CCTCC AA 207031 = KCTC 22167) as the type strain. The GenBank/EMBL/DBBJ accession number for the 16S rRNA gene sequence of strain YIM-C248T is EU135707.  相似文献   

13.
A moderately halophilic, Gram-positive, catalase- and oxidase-positive, rod-shaped, aerobic bacterium, designated strain JSM 071068T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from the Naozhou Island on the Leizhou Bay in the South China Sea. Cells were motile by means of peritrichous flagella and formed ellipsoidal endospores lying in subterminal swollen sporangia. Strain JSM 071068T was able to grow with 1–20% (w/v) total salts (optimum, 6–9%), at pH values of 6.0–10.0 (optimum, pH 7.5) and a temperature range of 10–35°C (optimum, 25°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7 and the major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The genomic DNA G + C content was 42.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 071068T belonged to the genus Halobacillus. The 16S rRNA gene sequence similarities between strain JSM 071068T and the type strains of the recognized Halobacillus species ranged from 97.9% (with Halobacillus alkaliphilus) to 95.3% (with Halobacillus kuroshimensis). The levels of DNA–DNA relatedness between the new isolate and the type strains of H. alkaliphilus, Halobacillus campisalis, Halobacillus halophilus and Halobacillus seohaensis were 25.6, 22.1, 10.8 and 13.2%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 071068T represents a new species of the genus Halobacillus, for which the name Halobacillus naozhouensis sp. nov. is proposed, with JSM 071068T (=DSM 21183T =KCTC 13234T) as the type strain. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 071068T is EU925615.  相似文献   

14.
We have isolated and characterized a xylanolytic actinomycete strain (RM1) from the extremely alkaline bauxite residue obtained from National Aluminum Company Ltd., Damanjodi, India. The phenotypic features and complete sequence of 16S rRNA revealed that this strain belong the genus Kocuria and showed 98% sequence similarity with Kocuria aegyptia. The RM1 strain was able to grow at pH 10.5 in buffered and unbuffered media and utilize 40 different carbon substrates. The RM1 strain under optimal conditions produced extracellular xylanase at 311 U/ml. The xylanase produced by RM1 showed a wide range of temperature (30–85°C) and pH (4.5–9) tolerance by retaining 90% of its activity. This is the first report of isolation of actinomycetes, Kocuria sp., which produces high amount of xylanase, from bauxite residue and offers a new source of xylanase-producing strains.  相似文献   

15.
The aim of this study was to evaluate the MPK1 (SLT2) gene deletion upon filamentous growth induced by isoamyl alcohol (IAA) in two haploid industrial strains of Saccharomyces cerevisiae using oligonucleotides especially designed for a laboratory S. cerevisiae strain. The gene deletion was performed by replacing part of the open reading frames from the target gene with the KanMX gene. The recombinant strains were selected by their resistance to G418, and after deletion confirmation by polymerase chain reaction, they were cultivated in a yeast extract peptone dextrose medium + 0.5% IAA to evaluate the filamentous growth in comparison to wild strains. Mpk1 derivatives were obtained for both industrial yeasts showing the feasibility of the oligonucleotides especially designed for a laboratory strain (Σ1278b) by Martinez-Anaya et al. (In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci 116:3423–3431, 2003). The filamentation rate in these derivatives was significantly lower for both strains, as induced by IAA. This drastic reduction in the filamentation ability in the deleted strains suggests that the gene MPK1 is required for IAA-induced filamentation response. The growth curves of wild and derivative strains did not differ substantially. It is not known yet whether the switch to filamentous growth affects the fermentative characteristics of the yeast or other physiological traits. A genetically modified strain for nonfilamentous growth would be useful for these studies, and the gene MPK1 could be a target gene. The feasibility of designed oligonucleotides for this deletion in industrial yeast strains is shown.  相似文献   

16.
A Gram-positive, moderately halophilic, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 089168T, was isolated from saline soil collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 2–25% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 8.0) and 10–45°C (optimum, 30°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The strain contained MK-7 as the predominant menaquinone, and diphosphatidylglycerol and phosphatidylglycerol as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0, and the DNA G + C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 089168T should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus carmonensis (sequence similarity 97.6%), Virgibacillus necropolis (97.3%) and Virgibacillus halodenitrificans (97.1%). Levels of DNA–DNA relatedness between strain JSM 089168T and the type strains of V. carmonensis, V. necropolis and V. halodenitrificans were 20.4, 14.3 and 12.0%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 089168T represents a novel species of the genus Virgibacillus, for which the name Virgibacillus litoralis sp. nov. is proposed. The type strain is JSM 089168T (=DSM 21085T =KCTC 13228T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 089168T is FJ425909.  相似文献   

17.
Hydroxy fatty acids (HFAs), originally found in small amount mainly from plant systems, are well known to have special properties such as higher viscosity and reactivity compared with other normal fatty acids. Recently, various microbial strains were tested to produce HFAs from different unsaturated fatty acids. Among those microbial strains tested, Pseudomonas aeruginosa PR3 are well known to utilize various unsaturated fatty acids to produce mono-, di-, and tri-HFAs. Previously, we reported that strain PR3 could utilize triolein as a substrate for the production of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) via the induction of lipase activity (Chang et al., Appl Microbiol Biotechnol, 74:301–306, 2007). In this study, we focused on the development of the optimal environmental conditions for DOD production from triolein by PR3. Optimal initial medium pH and incubation temperature were pH 8.0 and 25°C, respectively. Magnesium ion was essentially required for DOD production. Optimal inoculum size, time for substrate addition, and substrate concentration were 1%, 12 to 24 h, and 300 mg, respectively.  相似文献   

18.
A pale yellow-colored, moderately halophilic, Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, motile, aerobic bacterium, designated strain JSM 073008T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 1–20% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 7.5) and 10–40°C (optimum, 25–30°C). The major cellular fatty acids were C16:0, C16:1 ω7c/iso-C15:0 2-OH and C18:1 ω7c. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid. The predominant respiratory quinone was Q-8 and the genomic DNA G + C content was 47.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 073008T should be assigned to the genus Alteromonas, being most closely related to Alteromonas hispanica F-32T (sequence similarity 96.9%), followed by Alteromonas genovensis LMG 24078T (96.6%) and Alteromonas litorea TF-22T (96.4%). The sequence similarities between the novel isolate and the type strains of other recognized Alteromonas species ranged from 95.9% (with Alteromonas stellipolaris ANT 69aT) to 94.5% (with Alteromonas simiduii BCRC 17572T). The combination of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 073008T represents a new species of the genus Alteromonas, for which the name Alteromonas halophila sp. nov. is proposed. The type strain is JSM 073008T (=CCTCC AA 207035T = KCTC 22164T). The authors Yi-Guang Chen and Huai-Dong Xiao have contributed equally to this work.  相似文献   

19.
A novel pale-yellow-pigmented, moderately halophilic, facultatively alkaliphilic, non-motile, non-spore-forming, catalase- and oxidase-positive, obligately aerobic Gram-positive coccus, strain YIM-C678T was isolated from a saline soil sample collected from a hypersaline habitat in the Qaidam basin, northwest China. The organism grew at 4–37°C and pH 6.0–11.0, with optimum growth at 25°C and pH 8.0. Strain YIM-C678T grew optimally in the presence of 10–12% (w/v) NaCl and growth was observed in 1–25% (w/v) NaCl. The cell wall murein type was l-Lys-Gly5. Major cellular fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C16:0. Menaquinone 6 (MK-6) was the major respiratory quinone. The DNA G + C content was 46.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain YIM-C678T belonged to the family Staphylococcaceae and was most closely related to the eight described species of the genus Salinicoccus with sequence similarities from 92.2 (S. luteus YIM 70202T) to 97.5% (S. kunmingensis YIM Y15T). The DNA–DNA relatedness between strain YIM-C678T and S. kunmingensis YIM Y15T was 35.4%. Chemotaxonomic data and 16S rRNA gene sequence analysis supported the affiliation of strain YIM-C678T with the genus Salinicoccus. The combination of phylogenetic analysis, phenotypic characteristics, chemotaxonomic differences and DNA–DNA hybridization data supported the view that the bacterium represents a novel species of the genus Salinicoccus, for which the name Salinicoccus salitudinis sp. nov. is proposed, with YIM-C678T (=DSM 17846 = CGMCC 1.6299) as the type strain.  相似文献   

20.
A Bacillus sp. strain DHT, isolated from oil-contaminated soil, grew and produced biosurfactant when cultured in variety of substrate at salinities of up to 100 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, various pure alkanes and PAHs as a sole carbon and energy source across a wide range of temperature and salinity. Over the range evaluated, the degradation of hydrocarbon and biosurfactant production was not influenced by salinity (0–10% wv−1) and temperature (30–45°C). The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as the best substrate and toluene as the poorest. From 16S rDNA analysis, strain DHT was related to Bacillus licheniformis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号