首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1984,98(6):2026-2034
Mutations at three independent loci in Chlamydomonas reinhardtii result in a striking alteration of cell motility. Mutant cells representing the three mbo loci move backwards only, propelled by a symmetrical "flagellar" type of bending pattern. The characteristic asymmetric "ciliary" type of flagellar bend pattern responsible for forward movement that predominates in wild-type cells is seldom seen in the mutants. This defect in motility was found to be a property of the mutant axonemes themselves: the isolated axonemes, reactivated by addition of ATP, showed exclusively the symmetrical wave form, and the protein composition of these axonemes differed from the wild-type composition. Axonemes obtained from mbo1 , mbo2 , and mbo3 cells were found to be deficient in six polypeptides regularly present in wild type. The mbo2 axonemes were deficient in two additional polypeptides. The polypeptides were identified in autoradiograms of two-dimensional SDS polyacrylamide gel electrophoretograms of 35S- or 32P-labeled axonemes. One of the six polypeptides has previously been identified; it is a component missing in a mutant deficient for inner dynein arms. Of the five axonemal polypeptides newly identified by the mbo mutants, four were shown to be present as phosphoproteins in wild-type axonemes. One of the additional polypeptides deficient in mbo2 axonemes was also shown to be phosphorylated in wild-type axonemes. Detailed ultrastructural analysis of the mbo1 flagella and the mbo1 , mbo2A , and mbo3 axonemes revealed that the mutants specifically lack the beak- like projections found within the B-tubules of outer doublets 5 and 6.  相似文献   

2.
L. W. Tam  P. A. Lefebvre 《Genetics》1993,135(2):375-384
Chlamydomonas is a popular genetic model system for studying many cellular processes. In this report, we describe a new approach to isolate Chlamydomonas genes using the cloned nitrate reductase gene (NIT1) as an insertional mutagen. A linearized plasmid containing the NIT1 gene was introduced into nit1 mutant cells by glass-bead transformation. Of 3000 Nit(+) transformants examined, 74 showed motility defects of a wide range of phenotypes, suggesting that DNA transformation is an effective method for mutagenizing cells. For 13 of 15 such motility mutants backcrossed to nit(-) mutant strains, the motility phenotype cosegregated with the Nit(+) phenotype, indicating that the motility defects of these 13 mutants may be caused by integration of the plasmid. Further genetic analysis indicated that three of these mutants contained alleles of previously identified loci: mbo2 (move backward only), pf13 (paralyzed flagella) and vfl1 (variable flagellar number). Three other abnormal-flagellar-number mutants did not map to any previously described loci at which mutations produce similar phenotypes. Genomic sequences flanking the integrated plasmid in the mbo2 and vfl1 mutants were isolated and used as probes to obtain wild-type genomic clones, which complemented the motility defects upon transformation into cells. Our results demonstrate the potential of this new approach for cloning genes identified by mutation in Chlamydomonas.  相似文献   

3.
Chlamydomonas has two photobehavioral responses, phototaxis and photoshock. Rhodopsin is the photoreceptor for these responses and the signal transduction process involves transmembrane Ca2+ fluxes. This causes transient changes in flagellar beating, ultimately resulting in phototaxis or photoshock. To identify components that make up this signal transduction pathway, we generated nonphototactic strains by insertional mutagenesis. Seven new phototaxis genes were identified (ptx2-ptx8); alleles of six of these are tagged by the transforming DNA and therefore should be easily cloned. To order the mutants in the pathway, we characterized them electrophysiologically, behaviorally, and structurally, ptx5, ptx6, and ptx7 have normal light-induced photoreceptor currents (PRC) and flagellar currents (FC) but their pattern of swimming does not change in the normal manner when the intraflagellar Ca2+ concentration is decreased, suggesting that they have defects in the ability of their axonemes to respond to changes in Ca2+ concentration. ptx2 and ptx8 lack the FC but have normal PRCs, suggesting that they are defective in the flagellar Ca2+ channel or some factor that regulates it. ptx4 mutants have multiple eye-spots. ptx3 mutants are defective in a component essential for phototaxis but bypassed during photoshock; this component appears to be located downstream of the PRC but upstream of the axoneme.  相似文献   

4.
We characterized the gravitactic behavior of Chlamydomonas reinhardtii, a unicellular green alga, using a computer-analysis system in order to study directional swimming. The effects of the calcium-channel inhibitors gadolinium and diltiazem on graviorientation and swimming speed were examined. In addition, we studied directional swimming in the ptx1 strain of C. reinhardtii, a flagellar dominance mutant. Results indicate that Chlamydomonas reorients for gravitactic swimming through a mechanism different from the calcium-mediated pathway believed to be involved in gravity transduction in higher plants. We suggest that calcium-mediated gravitaxis originated in an organism that was more evolutionarily advanced than Chlamydomonas.  相似文献   

5.
A new mutant strain of Chlamydomonas, ptx1, has been identified which is defective in phototaxis. This strain swims with a rate and straightness of path comparable with that of wild-type cells, and retains the photoshock response. Thus, the mutation does not cause any gross defects in swimming ability or photoreception, and appears to be specific for phototaxis. Calcium is required for phototaxis in wild- type cells, and causes a concentration-dependent shift in flagellar dominance in reactivated, demembranated cell models. ptx1-reactivated models are defective in this calcium-dependent shift in flagellar dominance. This indicates that the mutation affects one or more components of the calcium-dependent axonemal regulatory system, and that this system mediates phototaxis. The reduction or absence of two 75-kD axonemal proteins correlates with the nonphototactic phenotype. Axonemal fractionation studies, and analysis of axonemes from mutant strains with known structural defects, failed to reveal the structural localization of the 75-kD proteins within the axoneme. The proteins are not components of the outer dynein arms, two of the three types of inner dynein arms, the radial spokes, or the central pair complex. Because changes in flagellar motility ultimately require the regulation of dynein activity, cell models from mutant strains defective in specific dynein arms were reactivated at various calcium concentrations. Mutants lacking the outer arms, or the I1 or I2 inner dynein arms, retain the wild-type calcium-dependent shift in flagellar dominance. Therefore, none of these arms are the sole mediators of phototaxis.  相似文献   

6.
Many motile microorganisms including flagellates such as the green Euglena gracilis move up and down within the water column and use a number of external clues for their orientation, the most important of which may be light and gravity. The cells use positive phototaxis and negative gravitaxis to move closer to the surface of the water column which for energetic reasons is vital for their survival. However, most phytoplankton organisms cannot tolerate the bright irradiance of unfiltered solar radiation at the surface which also bleaches the photosynthetic pigments, disables the photosynthetic apparatus and impairs phototaxis, gravitaxis and motility in Euglena. Thus, it is not surprising that at higher irradiances negative phototaxis operates antagonistically to the responses described above to guide the cells into deeper water where they are protected from excessive radiation. Phototaxis and gravitaxis are not independent from one another: in a vertically positioned cuvette negative gravitaxis can be "titrated" by light impinging from above and is compensated at about 30 W m-2. While the photoreceptor for phototaxis has been identified in Euglena gracilis biochemically and spectroscopically, the gravireceptor is not yet known. Young cultures of Euglena gracilis show a positive gravitaxis, the ecological signficance of which is not yet understood while older cultures show negative gravitaxis. One hypothesis concerning the nature of graviperception is based on a passive physical process such as an asymmetric distribution of the mass within the cell. However, the observation that short term UV irradiation decreases the precision of negative gravitaxis rather indicates the involvement of an active physiological gravireceptor. Furthermore, some heavy metal ions have been found to change the direction of movement from positive to negative gravitaxis in young cells.  相似文献   

7.
We have isolated a new Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) mutant with from one up to more than four eyespots cell?1. It was designated mes (multiple eyespots)‐10 A wild‐type cell has a single eyespot, located under the chloroplast envelope, at a certain position near the cell's equator where the chloroplast envelope is in contact with the cell membrane. The eyespot(s) in mes‐10, however, are located at various positions on its chloroplast. The mes‐10 cells displayed negative phototaxis to 480–500 nm light. This behavior differed from that of a similar mutant, ptx4, which has been shown to have multiple eyespots and display no phototaxis (Pazour et al., J. Cell Biol. 1995; 131 : 427–40). Mes‐10 may retain a functional photoreceptor and a photosignal transduction system independently of its multiple eyespots. This mutant should be useful for studying how C. reinhardtii responds to light signals, as well as how eyespots are formed in the cell.  相似文献   

8.
The directionality of phototaxis combined with gravitaxis was investigated experimentally for populations of the swimming alga Euglena gracilis Klebs. Two irradiances were used: a “weak” irradiance to elicit positive phototaxis and a “strong” irradiance to elicit negative phototaxis. In addition, by changing the density of cells in the suspension, the number of collisions between cells was varied to determine the effects of these collisions on the distribution of swimming directions in both the absence and the presence of illumination. We found that positive phototaxis was associated with a broader distribution of swimming directions than was negative phototaxis. In the latter case, the effect of phototaxis dominated over that of gravitaxis. Experiments on another swimming alga, Chlamydomonas nivalis Wille, showed that collisions between cells degraded the directionality of gravitaxis.  相似文献   

9.
The motile, unicellular freshwater flagellate Euglena gracilis uses external stimuli, like gravity, light or oxygen pressure in order to orient itself in its natural habitat. In the darkness the cells normally show a negative gravitactic behavior, that means they swim upward in the water column, Many ground and space experiment revealed that gravitaxis is most likely based on active physiological mechanisms (involvement of calcium, cAMP, membrane potential and other parameters).  相似文献   

10.
Daiker V  Häder DP  Richter PR  Lebert M 《Planta》2011,233(5):1055-1062
The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (<10 W/m2) and a negative one at higher irradiances (>10 W/m2). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.  相似文献   

11.
Abstract The effects of solar and artificial ultraviolet radiation on the motility and orientation of the dinoflagellate Y-100 were studied. The cells show a weak photokinesis but a pronounced phototaxis which is consistently positive between 1 and 100 klx (= 4 mW m−2 to 400 mW m−2); the precision of orientation increases with the fluence rate. Unfiltered solar radiation as well as artificial ultraviolet radiation reduce the percentage of motile cells increasingly with exposure time but the velocity of the still motile cells is less affected. Unirradiated control cells show a negative gravitaxis. After short exposure to solar or artificial ultraviolet radiation the precision of gravitaxis decreases and after prolonged exposure the cells start to actively move downward in the water column (positive gravitaxis). Phototaxis is also strongly impaired by ultraviolet radiation.  相似文献   

12.
Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility.  相似文献   

13.
14.
Photoaccumulation and random motility of wild-type and mutant gametes and dikaryons ofChlamydomonas reinhardtii were evaluated with quantitative assays and compared with those of vegetative cells. Gametes exhibited behavior similar to that of vegetative cells. Dikaryons constructed from (+) and (−) wild-type gametes exhibited strong photoaccumulation in the presence of a stimulus and normal random swimming in red light, which shows that the activity of flagella and other components from two cells can be integrated and coordinated to permit appropriate behavior. Dikaryons from crosses of the wild type with mutants exhibited intermediate photoaccumulation. suggesting that neither phenotype is dominant. In contrast, crosses between an abnormally swimming mutant and normally motile strains showed that wild-type swimming was dominant. Partial complementation of mutant photoresponse phenotypes occurred in some crosses, but recovery of fully normal behavior was not observed.  相似文献   

15.
Chlamydomonas reinhardtii swims toward or away from light (phototaxis) in a graded way depending on various conditions. Activation of rhodopsin provides signals to control the steering of this unicellular organism relative to a light source and to up-regulate rhodopsin biosynthesis. Intracellular cAMP and cGMP concentrations were measured in positive (1117, swims toward light) and negative (806, swims away from light) phototactic strains with and without light stimulation or 3-isobutyl-1-methylxanthine (IBMX). In the dark, the levels of cAMP and cGMP were significantly higher in the strain with positive phototaxis than in the strain with negative phototaxis. To test whether either cyclic nucleotide influenced the direction, their pre-stimulus levels were pharmacologically manipulated. Higher pre-stimulus levels of cAMP biased the cells to swim toward green light and lower levels biased the cells to swim away. In addition, green-light activation of rhodopsin or addition of IBMX causes a sustained increase in cAMP in both strains. As a consequence of this increase in cAMP, carotenogenesis is induced, as shown by recovery of phototaxis in a carotenoid mutant. Thus, two functions for cAMP were identified: high pre-stimulus level biases swimming toward a light source and sustained elevation following rhodopsin activation increases rhodopsin biosynthesis.  相似文献   

16.
The different steps of the gravity signal-transduction chain on the cellular level are not identified. In our experiments performed up to now we mainly stressed our attention on the last step, the response of the cells. Swimming behavior is a suitable indicator for the physiological status of a Paramecium cell. Depending on membrane potential and/or concentrations of Ca++, cGMP and cAMP the beating direction and the beating velocity of the cilia are influenced in a characteristical way leading to a changed swimming activity of the cell. The behavior of Paramecium is influenced by various stimuli from their environment. Previous studies have demonstrated that under controlled conditions Paramecium shows a clear gravity-dependent behavior resulting in negative gravitaxis and gravikinesis (speed regulation in dependence of gravity). By changing the orienting stimulus (gravity) we expected changes of the swimming behavior. Additional experiments were performed using pawn mutant d4-500r. Due to defective Ca(2+)-channels the membrane of this mutant cannot depolarize. As a consequence d4-500r cannot perform phobic responses and swim backwards. Comparative experiments are also performed with the ciliate Loxodes striatus. In contrast to Paramecium this ciliate possesses statocyst-like organelles--the Müller Organelles.  相似文献   

17.
A new ‘paralyzed’ mutant. OC–10, was isolated in Chlamydomonas reinhardtii Dangeard. OC-10 cannot swim and generally shows very little flagellar movement. However, when OC-10 was demembranated, axonemal motility was reactivated in the presence of adenosine triphosphate (ATP) or adenosine diphosphate (ADP). The beating form of the reactivated axonemes was almost the same as that of the wild-type axonemes. Flagellar regeneration of OC-10 was slower than that of the wild-type. Electron microscopic examination showed no abnormality in OC-10 flagella, but SDS/PAGE revealed that mobility of a flagellar membrane protein was changed and a few bands disappeared in OC-10 flagella, When the mutant was crossed to wild-type to form temporary dikaryon cells with 4 flagella, OC-10 flagella did not regain motility. Tetrad analysis of crosses between OC–10 and wild-type demonstrated a 1:1 segregation on the basis of flagellar motility. From these results, we suppose that OC-10 may be limited in ATP availability inside the flagella, or altered in flagellar membrane proteins important for motility.  相似文献   

18.
Green flagellates possess rhodopsin-like photoreceptors involved in control of their behavior via generation of photocurrents across the plasma membrane. Chlamydomonas mutants blocked in retinal biosynthesis are "blind," but they can be rescued by the addition of exogenous retinoids. Photosignaling by chlamyrhodopsin regenerated with 9-demethylretinal was investigated by recording photocurrents from single cells and cell suspensions, and by measuring phototactic orientation. The addition of a saturating concentration of this analog led to reconstitution of all receptor molecules. However, sensitivity of the photoreceptor current in cells reconstituted with the analog was smaller compared with retinal-reconstituted cells, indicating a decreased signaling efficiency of the analog receptor protein. Suppression of the photoreceptor current in double-flash experiments was smaller and its recovery faster with 9-demethylretinal than with retinal, as it would be expected from a decreased PC amplitude in the analog-reconstituted cells. Cells reconstituted with either retinal or the analog displayed negative phototaxis at low light and switched to positive one upon an increase in stimulus intensity, as opposed to the wild type. The reversal of the phototaxis direction in analog-reconstituted cells was shifted to a higher fluence rate compared with cells reconstituted with retinal, which corresponded to the decreased signaling efficiency of 9-demethylchlamyrhodopsin.  相似文献   

19.
I1 dynein, or dynein f, is a highly conserved inner arm isoform that plays a key role in the regulation of flagellar motility. To understand how the IC138 IC/LC subcomplex modulates I1 activity, we characterized the molecular lesions and motility phenotypes of several bop5 alleles. bop5-3, bop5-4, and bop5-5 are null alleles, whereas bop5-6 is an intron mutation that reduces IC138 expression. I1 dynein assembles into the axoneme, but the IC138 IC/LC subcomplex is missing. bop5 strains, like other I1 mutants, swim forward with reduced swimming velocities and display an impaired reversal response during photoshock. Unlike mutants lacking the entire I1 dynein, however, bop5 strains exhibit normal phototaxis. bop5 defects are rescued by transformation with the wild-type IC138 gene. Analysis of flagellar waveforms reveals that loss of the IC138 subcomplex reduces shear amplitude, sliding velocities, and the speed of bend propagation in vivo, consistent with the reduction in microtubule sliding velocities observed in vitro. The results indicate that the IC138 IC/LC subcomplex is necessary to generate an efficient waveform for optimal motility, but it is not essential for phototaxis. These findings have significant implications for the mechanisms by which IC/LC complexes regulate dynein motor activity independent of effects on cargo binding or complex stability.  相似文献   

20.
PHOTOTAXIS IN CHLAMYDOMONAS REINHARDTII   总被引:8,自引:5,他引:3       下载免费PDF全文
Parameters which distinguish phototaxis from random motility in Chlamydomonas reinhardtii have been defined with quantitative assays. The phototactic responses in photosynthetic, mixotrophic, and heterotrophic cultures were highest during exponential growth and declined rapidly as the cultures entered stationary phase. In contrast, random motility was relatively constant throughout growth. Phototaxis and motility also differ in their sensitivity to azide and antimycin A. Both of these drugs inhibited phototaxis within 5 min, but motility was unaffected for at least 30 min. Phototaxis and motility have different ion requirements. Optimum motility was observed in the presence of either Ca++ or Mg++; phototaxis required Ca++ and either K+ or NH4+. Photosynthesis is not required for phototaxis, since phototaxis was not inhibited by dichlorophenyldimethyl urea, and a mutant lacking chlorophyll was phototactic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号