共查询到20条相似文献,搜索用时 0 毫秒
1.
Chlamydomonas reinhardtii is a single-celled green alga that phototaxes toward light by means of a light-sensitive organelle, the eyespot. The eyespot is composed of photoreceptor and Ca(++)-channel signal transduction components in the plasma membrane of the cell and reflective carotenoid pigment layers in an underlying region of the large chloroplast. To identify components important for the positioning and assembly of a functional eyespot, a large collection of nonphototactic mutants was screened for those with aberrant pigment spots. Four loci were identified. eye2 and eye3 mutants have no pigmented eyespots. min1 mutants have smaller than wild-type eyespots. mlt1(ptx4) mutants have multiple eyespots. The MIN1, MLT1(PTX4), and EYE2 loci are closely linked to each other; EYE3 is unlinked to the other three loci. The eye2 and eye3 mutants are epistatic to min1 and mlt1 mutations; all double mutants are eyeless. min1 mlt1 double mutants have a synthetic phenotype; they are eyeless or have very small, misplaced eyespots. Ultrastructural studies revealed that the min1 mutants are defective in the physical connection between the plasma membrane and the chloroplast envelope membranes in the region of the pigment granules. Characterization of these four loci will provide a beginning for the understanding of eyespot assembly and localization in the cell. 相似文献
2.
3.
Twelve arginine-requiring mutants of the unicellular green alga Chlamydomonas reinhardtii previously isolated in our laboratory were investigated to find new blocks in the biosynthetic pathway of arginine. In addition to the already described mutants lacking acetylglutamyl phosphate reductase (arg 1), ornithine carbamoyltransferase (arg4) and argininosuccinate lyase (arg7), three new types of mutants were found lacking acetylornithine aminotransferase (arg9-1, arg9-2), acetylornithine glutamate transacetylase (arg10) and argininosuccinate synthetase (arg8-1, arg8-2, arg8-3) respectively. The genetic analysis of these new mutants showed that arg9 and arg8 are unlinked to the other arginine markers and that arg10 probably carries a chromosomal mutation inducing a very high lethality of meiotic products.Abbreviations WT
wild-type
- mt
mating-type
- SP
spore plating
- ZP
zygote plating 相似文献
4.
We characterized the gravitactic behavior of Chlamydomonas reinhardtii, a unicellular green alga, using a computer-analysis system in order to study directional swimming. The effects of the calcium-channel inhibitors gadolinium and diltiazem on graviorientation and swimming speed were examined. In addition, we studied directional swimming in the ptx1 strain of C. reinhardtii, a flagellar dominance mutant. Results indicate that Chlamydomonas reorients for gravitactic swimming through a mechanism different from the calcium-mediated pathway believed to be involved in gravity transduction in higher plants. We suggest that calcium-mediated gravitaxis originated in an organism that was more evolutionarily advanced than Chlamydomonas. 相似文献
5.
6.
7.
Lianyong Wang Takashi Yamano Masataka Kajikawa Masafumi Hirono Hideya Fukuzawa 《Photosynthesis research》2014,121(2-3):175-184
Aquatic microalgae induce a carbon-concentrating mechanism (CCM) to maintain photosynthetic activity in low-CO2 (LC) conditions. Although the molecular mechanism of the CCM has been investigated using the single-cell green alga Chlamydomonas reinhardtii, and several CCM-related genes have been identified by analyzing high-CO2 (HC)-requiring mutants, many aspects of the CO2-signal transduction pathways remain to be elucidated. In this study, we report the isolation of novel HC-requiring mutants defective in the induction of CCM by DNA tagging. Growth rates of 20,000 transformants grown under HC and LC conditions were compared, and three HC-requiring mutants (H24, H82, and P103) were isolated. The photosynthetic CO2-exchange activities of these mutants were significantly decreased compared with that of wild-type cells, and accumulation of HLA3 and both LCIA and HLA3 were absent in mutants H24 and H82, respectively. Although the insertion of the marker gene and the HC-requiring phenotype were linked in the tetrad progeny of H82, and a calcium-sensing receptor CAS was disrupted by the insertion, exogenous expression of CAS alone could not complement the HC-requiring phenotype. 相似文献
8.
Sixteen new mutants of the biflagellate green alga Chlamydomonas reinhardtii with either stumpy-flagella or no flagella at all were examined by electron microscopy. Four of the mutants were found to carry short bulbous flagella containing amorphous electron-dense material which may represent unassembled flagellar protein. Basal bodies of normal ultrastructure were present in all mutants. Dikaryon dominance tests indicated that the stumpy mutations were recessive to wild-type in all cases tested. Stumpy mutations also conferred a measure of detergent resistance to Chlamydomonas, apparently by affecting the detergent-solubility of the flagellar membrane. 相似文献
9.
Insertional mutagenesis to isolate acetate-requiring mutants in Chlamydomonas reinhardtii 总被引:1,自引:0,他引:1
Abstract An arg 7 mutant of the green alga Chlamydomonas reinhardtii was transformed with pARG7.8, a plasmid bearing the wild-type ARG 7 gene. Out of 4100 arg+ transformants selected on an arginine-free medium supplemented with acetate, nine failed to grow on acetate-free medium (ac− mutants). The results of the genetic and molecular analysis of several ac− mutants are in agreement with the hypothesis that they originated from insertion of the incoming plasmid into the nuclear genome. These mutants should constitute valuable tools for isolating the corresponding wild-type genes after plasmid rescue into Escherichia coli . 相似文献
10.
Paralyzed flagellar mutants pf-1, pf-2, pf-7, and pf-18 of the green alga Chlamydomonas reinhardtii (Dangeard) were shown to store a significantly greater amount of starch than the motile wild type 137c+. The increase in starch storage was significant relative to protein, chlorophyll, and cell number. Analysis of average cell size revealed that the paralyzed mutants were larger than the wild type. This increase in storage molecule accumulation supports an inverse relationship between chemical energy storage and energy utilization for biomechanical/motile cellular functions. Chlamydomonas reinhardtii provides a useful model for studies of the role of cytoskeletal activity in the energy relationship and balance of organisms. 相似文献
11.
Carotenoids play an integral and essential role in photosynthesis and photoprotection in plants and algae. A collection of Chlamydomonas reinhardtii mutants lacking carotenoids was characterized for pigment and tocopherol (vitamin E) composition, growth phenotypes under different light conditions, and the molecular basis of their mutant phenotype. The carotenoid-less mutants, or "white" mutants, were also deficient in chlorophylls but had approximately twice the tocopherol content of the wild type. White mutants grew in the dark but were unable to survive in the light, even under very low light conditions on acetate-containing medium. Genetic crosses and recombination tests revealed that all individual white mutants in the collection are alleles of a single gene, lts1, and the white phenotype was closely linked to a marker located in the phytoene synthase gene. DNA sequencing of the phytoene synthase gene from each of the mutants revealed nonsense, missense, frameshift, and splice site mutations. Transformation with a wild-type copy of the phytoene synthase gene was able to complement the lts1-210 mutation. Together, these results show that all the white mutants examined in this work are affected in the phytoene synthase gene. 相似文献
12.
T. S. Pinto F. X. Malcata J. D. Arrabaça J. M. Silva R. J. Spreitzer M. G. Esquível 《Applied microbiology and biotechnology》2013,97(12):5635-5643
Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10–15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae. 相似文献
13.
Recombinant proteins have become more and more important for the pharmaceutical and chemical industry. Although various systems for protein expression have been developed, there is an increasing demand for inexpensive methods of large-scale production. Eukaryotic algae could serve as a novel option for the manufacturing of recombinant proteins, as they can be cultivated in a cheap and easy manner and grown to high cell densities. Being a model organism, the unicellular green alga Chlamydomonas reinhardtii has been studied intensively over the last decades and offers now a complete toolset for genetic manipulation. Recently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its ability for biotechnological applications. 相似文献
14.
P-starved plants scavenge inorganic phosphate (Pi) by developing elevated rates of Pi uptake, synthesizing extracellular phosphatases, and secreting organic acids. To elucidate mechanisms controlling these acclimation responses in photosynthetic organisms, we characterized the responses of the green alga Chlamydomonas reinhardtii to P starvation and developed screens for isolating mutants (designated psr [phosphorus-stress response]) abnormal in their responses to environmental levels of Pi. The psr1-1 mutant was identified in a selection for cells that survived exposure to high concentrations of radioactive Pi. psr1-2 and psr2 were isolated as strains with aberrant levels of extracellular phosphatase activity during P-deficient or nutrient-replete growth. The psr1-1 and psr1-2 mutants were phenotypically similar, and the lesions in these strains were recessive and allelic. They exhibited no increase in extracellular phosphatase activity or Pi uptake upon starvation. Furthermore, when placed in medium devoid of P, the psr1 strains lost photosynthetic O2 evolution and stopped growing more rapidly than wild-type cells; they may not be as efficient as wild-type cells at scavenging/accessing P stores. In contrast, psr2 showed elevated extracellular phosphatase activity during growth in nutrient-replete medium, and the mutation was dominant. The mutant phenotypes and the roles of Psr1 and Psr2 in P-limitation responses are discussed. 相似文献
15.
Dolly K. Khona Venkatramanan G. Rao Mustafa J. Motiwalla P. C. Sreekrishna Varma Anisha R. Kashyap Koyel Das Seema M. Shirolikar Lalit Borde Jayashree A. Dharmadhikari Aditya K. Dharmadhikari Siuli Mukhopadhyay Deepak Mathur Jacinta S. D’Souza 《Journal of biological physics》2013,39(1):1-14
Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved ‘9+2’ axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26–57%) and beat frequencies (by 8–16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella. 相似文献
16.
Chlamydomonas reinhardtii mutants defective in the chloroplast ATP synthase are highly sensitive to light. The ac46 mutant is affected in the MDH1 gene, required for production or stability of the monocistronic atpH mRNA encoding CF(O)-III. In this and other ATP synthase mutants, we show that short-term exposure to moderate light intensities-a few minutes-induces an inhibition of electron transfer after the primary quinone acceptor of photosystem II (PSII), whereas longer exposure-several hours-leads to a progressive loss of PSII cores. An extensive swelling of thylakoids accompanies the initial inhibition of electron flow. Thylakoids deflate as PSII cores are lost. The slow process of PSII degradation involves the participation of ClpP, a chloroplast-encoded peptidase that is part of a major stromal protease Clp. In the light of the above findings, we discuss the photosensitivity of ATP synthase mutants with respect to the regular photoinhibition process that affects photosynthetic competent strains at much higher light intensities. 相似文献
17.
Fujiwara S Kobayashi I Hoshino S Kaise T Shimogawara K Usuda H Tsuzuki M 《Plant & cell physiology》2000,41(1):77-83
Arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii were obtained by screening mutants generated by random insertional mutagenesis for growth in the presence of various concentrations of arsenate. The intracellular concentrations of arsenic in the mutants kept in the arsenate-containing medium were determined with an atomic absorption spectrophotometer. The intracellular levels of arsenic in the arsenate-resistant mutants were all lower than that of the parent strain CC425. Some of the arsenate-sensitive mutants, AS1 and AS3, showed obviously higher levels of arsenic than that of CC425, while other sensitive mutant, AS2, did not accumulate arsenic so much. Analysis of the chemical species of arsenic suggested that inorganic arsenic was converted to dimethylarsinic acid (DMAA) in CC425. However, DMAA was hardly detected in AS2. The mechanisms of the resistance to arsenate are discussed on its uptake and detoxification. 相似文献
18.
The maturation of zygotes formed by the fusion of two gametes is the essential part of the diploid phase of the Chlamydomonas reinhardtii sexual life cycle and results in mature zygotes competent to germinate. To understand the molecular mechanisms underlying zygote maturation and the attainment of competence for germination we isolated genomic clones representing three different genes that are specifically expressed in Chlamydomonas reinhardtii zygotes. Accumulation of the RNAs started more than 24 h after mating, setting these genes apart from genes expressed in young zygotes [9]. Upon light-induced germination of zygotes, the mRNAs disappeared. The patterns of RNA accumulation and disappearance were gene-specific and suggested a function of these genes in maturation and/or in initial steps of germination. 相似文献
19.
Summary Chlorsulfuron and/or imazaquin resistant mutants of Chlamydomonas reinhardtii strain CW15 have been obtained and shown to have actolactate synthase (ALS) with altered sensitivity to one or both of these herbicides. Herbicide resistance in the three mutants described is allelic, and resistance appears to result from a dominant or semidominant mutation in a single, nuclear gene. Imazaquin and chlorsulfuron resistant ALS from imazaquin and chlorsulfuron resistant mutants, together with single-gene Mendelian inheritance of these phenotypes, suggests that ALS is the sole site of action of the two herbicides in Chlamydomonas. A high degree of cross resistance between the two herbicides was found in only one mutant. This mutant (IM-13) was selected for resistance to imazaquin and has a high level of in vitro resistance to both imazaquin (270-fold increased I50) and chlorsulfuron (900-fold increased I50). In another mutant selected for resistance to imazaquin (IMR-2), hyper-sensitivity to chlorsulfuron was found. A mutant selected for resistance to chlorsulfuron (CSR-5), had a substantial degree of resistance of chlorsulfuron (80-fold increased I50), but not to imazaquin (7-fold increased I50). 相似文献
20.
Preferential recovery of uniparental streptomycin resistant mutants from diploid Chlamydomonas reinhardtii 总被引:3,自引:0,他引:3
Robert W. Lee Nicholas W. Gillham Karen P. Van Winkle John E. Boynton 《Molecular & general genetics : MGG》1973,121(2):109-116
Summary Analysis of the streptomycin resistant mutants recovered from control and N-methyl-N-nitro-N-nitrosoguanadine (MNNG) treated haploid cultures of C. reinhardtii reveal that approximately 60% of the mutants are of the sr-1 type known to show Mendelian inheritance while 40% are of the sr-2 and sm-3 types known to be inherited in a uniparental (UP) manner. In contrast, most if not all streptomycin mutants recovered from similarly treated diploid cultures of C. reinhardtii are of the UP variety. Failure to recover sr-1 mutants from the diploid stock is explained by our findings that diploids heterozygous for Mendelian streptomycin resistance (sr-1/sr-1
+) are both stable and sensitive to streptomycin. Efficient recovery of UP streptomycin resistant mutants from diploids can be explained by the observations of Gillham (1963a, 1969) which demonstrate that diploids heterozygous for an sr-2 mutation (sr-2/sr-2
+) segregate resistant and sensitive progeny during mitotic cell division.The utility of diploids for isolating new UP mutant genotypes, for establishing the cellular localization of the UP genome(s), and for characterizing the rules governing UP gene segregation is discussed.Supported by NIH postdoctoral fellowship GM 52359 to R.W.L., NIH predoctoral traineeship GM 02007 to K.P.V., and NSF grant GB-22769 to N.W.G. and J.E.B. 相似文献