首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An alkaline nuclease was purified from microplasmodia of Physarum polycephalum. The nuclease, active on denatured DNA and RNA and free of contamination by other nucleolytic activities, appeared to be a zinc-metallo protein. The enzyme was only active under conditions, where Zn2+ were retained in the enzyme. Loss of zinc occurred by the chelating action of EDTA, EGTA or ampholines, by acid of highly alkaline pH conditions or by high ionic strength. The addition of ZnCl2 to compensate losses, restored all activity, while all other divalent cations caused inhibition. The nuclease, with a molecular weight of 32 000, was stable at neutral pH at high temperatures with a half-life of 20 min at 80 degrees C. It was inhibited by any salt of buffer concentration above the level of zero ionic strength and showed a special sensitivity towards phosphate ions. The possible similarity of this enzyme to nuclease S1 from Aspergillus oryzae is pointed out.  相似文献   

2.
Inorganic phosphate, a strong activator of glutamate dehydrogenase at pH 8.0–9.0, is an inhibitor at pH 6.0–7.6. The extent of inhibition increases with the decrease of pH. The same effect is shown by other electrolytes, including Tris-hydroxymethyl-aminomethane and NaCl.The combined effect of pH and ionic strength also alters the allosteric characteristics of the enzyme. Lowering the pH minimizes the activation by high concentrations of NAD; phosphate partially restores this activation. The allosteric activation by ADP disappears at pH around neutrality; in the pH range 6.0–7.0, ADP becomes a strong inhibitor, the inhibition being enhanced by the addition of ionic compounds. Similarly, the extent of allosteric inhibition by guanosine 5′-triphosphate (pyro) (GTP), which is maximal at pH 9.0, decreases at lower pH values and a slight activation is observed in the presence of electrolytes at pH 6.0.Glutamate dehydrogenase, selectively desensitized by dinitrophenylation in the presence of ADP, can be activated by ADP at pH 9.0, but is no longer inhibited by the same effector at pH 6.0, high salt concentration. The densensitized enzyme is not inhibited by GTP at pH 9.0, but is activated by this effector at pH 6.0 in the presence of ionic compounds. Conversely, GTP-protected dinitrophenylated glutamate dehydrogenase is desensitized only to the effect of the activating modifier, ADP at pH 9.0, GTP at pH 6.0, high salt concentration. These findings suggest that the conformation of each allosteric site of glutamate dehydrogenase is changed by pH and ionic strength so that it keeps its specificity for the ligand which brings about a given effect, activation or inhibition, independently from its chemical structure.  相似文献   

3.
The reversible, noncovalent binding of inorganic phosphate to Escherichia coli alkaline phosphatase at pH 8 has been examined by equilibrium dialysis at two temperatures and two ionic strengths. Binding occurs with a stoichiometry of two phosphate ions per dimeric enzyme molecule and a single dissociation constant that is not very sensitive to temperature or ionic strength. These results contradict published evidence for anti-cooperative binding of inorganic phosphate to alkaline phosphatase. Reasons are presented for believing that the apparent anti-cooperativity reported by other workers is artifactual.  相似文献   

4.
Mixed-solvent systems of methanol and other alcohols and water were used to study the properties of bovine phenylethanolamine-N-methyltransferase. The presence of methanol decreased the binding affinity of the enzyme for its amine substrate but did not alter the maximum velocity. The change in binding was accompanied by an alkaline shift in the pK of an ionizable group in the active site. The well-known property of enzyme inhibition by substrate was also alleviated. Increasing the pH of the medium, in the presence or absence of methanol, increased the maximum velocity but did not alter substrate inhibition. It is proposed that substrate inhibition is due in part to the ionic state of a single unidentified ionizable group in the active site of the enzyme and to a slow release of product. Evidence that an essential, pH-dependent sulfhydryl modulates product release is presented. The properties of phenylethanolamine-N-methyl-transferase are quite responsive to changes in pH, ionic strength, and water content so that the enzyme may well be regulated at the microenvironmental level.  相似文献   

5.
The authors describe different properties of brain mitochondrial and cell sap alanine aminotransferase. They showed that the mitochondrial enzyme was inhibited by maleate, chlorides, acetate and phosphate with a high ionic strength (over 1.8), that its pH optimum lay between 7.5 and 8.5, that it was thermolabile at over 40 degrees C and that it was salted out from solutions with ammonium sulphate at 0.6--0.8 saturation. The activity of the cell sap enzyme was inhibited by phosphate at an ionic strength of only 0.12, less markedly by maleate and not at all by chlorides and acetate; its pH optimum was about 8, it was thermostable up to 60 degrees C and was precipitated from ammonium sulphate solution at between 0.35 and 0.6 saturation. The authors conclude from their results that two different alanine aminotransferase enzymes are present in the CNS.  相似文献   

6.
The inhibition by phosphonates and phosphate analogues of the alkaline phosphatase activity of rat intestinal brush-border membrane vesicles was studied at pH 7.5 and 30 degrees C. Phenylene-1,3-diphosphonate, 2,6-dinitrophenylphosphonate and phosphonoacetaldehyde were found to be competitive inhibitors, with Ki values in the range 16-80 microM. Adenosine 5'-[beta-thio]diphosphate and adenosine 5'[gamma-thio]triphosphate are also very potent inhibitors, with Ki values of approx. 10 microM. The inhibition produced by these thiophosphates was mainly competitive but with a slight non-competitive element. Adenosine 5'-[beta gamma-imido]triphosphate is also a competitive inhibitor of the alkaline phosphatase, but oxidation of the ribose moiety of this compound with NaIO4 results in an active-site-directed irreversible inhibitor that could be of general use in studies of the mechanism of action of this enzyme.  相似文献   

7.
W F Beyer  Y Wang  I Fridovich 《Biochemistry》1986,25(20):6084-6088
Phosphate was reported to be an inhibitor of copper- and zinc-containing superoxide dismutase (SOD) [de Freitas, D.M., & Valentine, J.S. (1984) Biochemistry 23, 2079-2082]. Thus SOD activity, in 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.4), was decreased by approximately 50% when the assay was made 10 mM in phosphate, and the ionic strength was adjusted with sodium fluoride. The inhibitory effect of phosphate was attributed to the neutralization of the positive charge on the guanidino residue of Arg-141. We have reexamined the effects of phosphate inhibition of SOD and found that the enzyme has identical activity in phosphate or HEPES buffer when the ionic strength is adjusted with NaBr. The putative inhibitory effect of phosphate appears to have been due to fluoride inhibition of the superoxide generating system of xanthine/xanthine oxidase. We have confirmed this result by using a photochemical generation of O2- in addition to the enzymatic generation of O2-. Chemical modification of the lysine residues to homoarginines does not affect the activity of the enzyme and does not impart a phosphate sensitivity. Chemical modification with phenylglyoxal caused approximately 80% inactivation of the native enzyme and 90% inactivation of the O-methylisourea-modified enzyme. Our results suggest that phosphate does not inhibit the copper- and zinc-containing superoxide dismutase (Cu,Zn-SOD) beyond the expectations of its effect on ionic strength.  相似文献   

8.
Studies with partially purified extracts of the nicotinamide adenine dinucleotide-linked l(+)-lactate dehydrogenase of Streptococcus cremoris US3 showed that fructose-1,6-diphosphate (FDP) was essential for the catalytic reduction of pyruvate in the pH range 5.0 to 7.0, outside of which the organism does not grow. In the absence of FDP, enzyme activity was observed only in the region of pH 8.0. The optimal pH for the oxidation of lactate was approximately 8.0 in the presence and absence of FDP. The FDP-activated enzyme was markedly inhibited by inorganic phosphate. The enzyme lost activity on standing at 5 C in alkaline triethanolamine, was quite stable at pH 6.0 to 6.5, and underwent irreversible denaturation below pH 5.0. Inorganic phosphate or FDP increased the stability of the enzyme in alkaline buffers. Some distinguishing properties of individual lactate dehydrogenases, activated by FDP, are discussed.  相似文献   

9.
The influence of inositol hexakisphosphate (IHP) and its cupric ion chelate complexes on alkaline phosphatase (APase) catalysis of p-nitrophenyl phosphate hydrolysis at pH 7.2 has been determined. Both IHP and (IHP-Cu) complexes, but not Cu(II) alone, are effective inhibitors of the enzyme and are of the strictly competitive type with Ki values in the microM range. Without added inhibitors present, the kinetic parameters are kcat 5.7 x 10(3) min(-1); and KM, 18 microM. In the presence of 62 microM IHP, kcat was essentially unchanged with an apparent KM of 68 microM giving a Ki of 22 microM. In the presence of an (IHP-Cu) complex (62 microM IHP, 128 microM Cu(II], the apparent KM was 55 microM and Ki was 30 microM. At a ratio of Cu(II):IHP of 6.0 (372:62 microM) the apparent KM was 30 microM and Ki was 94 microM. The inhibitory effect of (IHP-Cu) complexes thus decreases as the IHP binding sites for cupric ions become saturated. A high ionic strength environment markedly reduces the inhibitory effect of IHP. Previous studies have also shown that rates of APase inactivation by (IHP-Cu) complexes are also ionic strength sensitive [1]. The inhibition of APase activity by either IHP or its coordinate complexes with cupric ions is evidence for their interaction at the enzyme's catalytic sites. Such results thus provide support for an essential element of the mechanism previously suggested for the reversible inactivation (as opposed to inhibition) of APase by (IHP-Cu) chelate complexes, viz., that it may be due to a metal ion exchange reaction leading to the formation of a Cu(II)-substituted enzyme.  相似文献   

10.
In an investigation of the link between Pi transport and alkaline phosphatase in mammalian small intestine, the characteristics of Pi uptake by brush-border membrane vesicles prepared from rat intestine were compared with the properties of the tissue alkaline phosphatase. The NaCl-dependent Pi uptake had a Km of 0.1 mM at pH 7.5 and was inhibited totally by 1 mM-arsenate and by 1 mM-vanadate. These compounds are also potent competitive inhibitors of the alkaline phosphatase activity of the vesicles, with Ki values less than 5 microM at pH 7.5. When the effect on Pi uptake of several other potent inhibitors of alkaline phosphatase, including phosphonates and phosphate analogues, was tested, however, it was found that there was little, if any, inhibition of transport under conditions in which the inhibition of phosphatase activity was total. Incubation of the vesicles for 20 min with oxidized adenosine 5'-[beta gamma-imido]triphosphate followed by rapid gel filtration to remove the inhibitor resulted in an irreversible loss of phosphatase activity, but left Pi transport unimpaired. Conversely, a similar prolonged incubation with adenosine 5'-[beta-thio]diphosphate or adenosine 5'-[gamma-thio]triphosphate had no effect on alkaline phosphatase activity but resulted in a permanent partial loss of transport capability. The failure to demonstrate an inhibition of Pi transport resulting from inhibition of alkaline phosphatase and the different responses of enzymic activity and Pi transport to irreversible inhibition make it very unlikely that the enzyme is directly involved in the transport system.  相似文献   

11.
Tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal exopeptidase that sequentially removes tripeptides from the N termini of polypeptides and shows a minor endoprotease activity. Mutations in TPP I lead to classic late-infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease. TPP I proenzyme is converted in lysosomes into a mature enzyme with the assistance of another protease and is able to autoactivate in acidic pH in vitro via a unimolecular mechanism. Because autoactivation in vitro at the pH values reported for lysosomes generated inactive enzyme, we intended to determine whether physiologically relevant factors can modify this process to also make it plausible in vivo. Here, we report that high ionic strength and glycosaminoglycans (GAGs) increase yields (ionic strength) or yields and rates (GAGs) of activation, enhance degradation of liberated TPP I prosegment fragments, and switch effective autoactivation of TPP I proenzyme toward less acidic pH values (up to pH 6.0). Although ionic strength and GAGs also inhibited TPP I activity in vitro and in living cells, the degree of inhibition (from 20 to 60%) appears to be of rather limited functional significance. Importantly, binding to GAGs improved thermal stability of TPP I and protected the enzyme against alkaline pH-induced denaturation in vitro (t((1/2)) of mature enzyme at pH 7.4 increased by approximately 8-fold in the presence of heparin) and in vivo ( approximately 2-fold higher loss of TPP I in cells deficient in GAGs than in control cells after bafilomycin A1 treatment). These findings elucidate a potent physiologically relevant mechanism of TPP I regulation by GAGs and suggest that generation of the active enzyme via autoactivation can be accomplished not only in vitro but in vivo as well.  相似文献   

12.
The E. coli pyruvate dehydrogenase complex was inhibited by pyruvate in absence of its cofactor, NAD+. The inhibition was found to increase with pH and phosphate concentration of the buffer and decrease with its ionic strength. The inhibition profile was different with MOPS buffer. No radioactivity was found in the enzyme, when the latter was incubated with 2-14C-pyruvate. The results suggest that covalent adduct formation is not necessary for the observed inhibition.  相似文献   

13.
14.
The structural and functional properties of arginine kinase (AK) in alkaline conditions in the absence or presence of salt have been investigated. The conformational changes of AK during alkaline unfolding and salt-induced folding at alkaline pH were monitored using intrinsic fluorescence emission, binding of the fluorescence probe 1-anilino-8-naphthalenesulfonate and circular dichroism. The results for the alkaline unfolded enzyme showed that much lower pH (11.0) was required to cause the complete loss of AK activity than was required to cause an obvious conformational change of the enzyme. Compared with the completely unfolded state in 5 M urea, the high pH denatured enzyme had some residual secondary and tertiary structure even at pH 13.0. Increasing the ionic strength by adding salt at pH 12.75 resulted in the formation of a relatively compact tertiary structure and a little new secondary structure with hydrophobic surface enhancement. These results indicate that the partially folded state formed under alkaline conditions may have similarities to the molten globule state which is compact, but it has a poorly defined tertiary structure and a native-like secondary structure.  相似文献   

15.
The thermal stability of horse muscle acylphosphatase was investigated by measuring the inactivation constants at various pH and temperature values, and by differential spectra technique. This enzyme has high thermal stability in an acidic environment but is inactivated in an alkaline medium. It was found that the enzyme can be protected against such inactivation at pH 8.0 by increasing its concentration and the ionic strength of the solution. The effect of high urea concentrations on stability was also measured. It was found that spectral changes at 230 nm are related to urea inactivation of the enzyme, and that the enzymatic activity can be instantly and almost completely restored by dilution of the urea.  相似文献   

16.
An ultraviolet absorption difference spectrum that is typical of a change in ionization state (pKa 9.7 leads to greater than 11.5) of a tyrosyl residue has been observed on the binding between Streptomyces subtilisin inhibitor (SSI) and subtilisin BPN' [EC 3.4.21.14] at alkaline pH, ionic strength 0.1 M, at 25 degrees C (Inouye, K., Tonomura, B., and Hiromi, K., submitted). When the complex of SSI and subtilisin BPN' is formed at an ionic strength of 0.6 M and pH 9.70, the characteristic features of the protonation of a tyrosyl residue in the difference spectrum are diminished. These results suggest that the pKa-shift of a tyrosyl residue observed at alkaline pH and lower ionic strength results from an electrostatic interaction. Nitration of tyrosyl residues of SSI and of subtilisin BPN' was performed with tetranitromethane (TNM). By measurements of the difference spectra observed on the binding of the tyrosyl-residue-nitrated SSI and the native subtilisin BPN', and on the binding of the native SSI and the tyrosyl-residue-nitrated subtilisin BPN' and alkaline pH, the tyrosyl residue in question was shown to be one out of the five tyrosyl residues of pKa 9.7 of the enzyme. This tyrosyl residue was probably either Tyr 217 or Tyr 104 on the basis of the reactivities of tyrosyl residues of the enzyme with TNM and their locations on the enzyme molecule. Carboxyl groups of SSI were modified by covalently binding glycine methyl ester with the aid of water-soluble carbodiimide, in order to neutralize the negative charges on SSI. In the difference spectrum which was observed on the binding of subtilisin BPN' and the 5.3-carboxyl-group-modified SSI at alkaline pH, the characteristic features of the protonation of a tyrosyl residue were essentially lost, and the difference spectrum is rather similar to that observed on the binding of the native SSI and the enzyme at neutral pH. This phenomenon indicates that the pKa of a tyrosyl residue of the enzyme is shifted upwards by interaction with carboxyl group(s) of SSI on the formation of the enzyme-inhibitor complex.  相似文献   

17.
Abstract— The velocity of the reaction catalysed by acyl-CoA: l -giycerol-3-phosphate acyltransferase (EC 2.3.1.15) of microsomes from rat brain was affected by the nature of the buffering agent, the ionic strength and the sucrose concentration of the reaction medium. The enzyme was inhibited by buffers based on trimethyl-pyridine, diethyl barbituric acid, and boric acid. Buffers based on N-ethyl morpholine, potassium phosphate, sodium arsenate, imidazole, tris and triethanolamine were not inhibitory. Dithiothreitol protected the enzyme and produced maximal activity at levels in the reaction medium between 0.2 and 2.8 mM. Optimum ionic strength was determined by varying the concentration of a potassium phosphate buffer and in this medium the optimum ionic strength was about 0.2 M. In other studies with sodium formate, potassium acetate and other salts there was a broad plateau of activity in a range about 0.2 M. A study of pH vs. activity with two different buffering agents at constant ionic strength showed a broad maximum of activity from pH 7.2 to pH 7.8. The velocity of the reaction could be further increased by the inclusion of 0.25 M-sucrose in the reaction medium in the presence of 0.2 M salts. The sucrose effect produced maximum velocities at sucrose concentrations ranging from 0.2 to 0.6 M. The studies reported here indicate that the activity of the enzyme is dependent upon the state of hydration of the microsomal membranes and in part on the ability of the enzyme or membrane to cope with large micelles of S-palmityl-CoA.  相似文献   

18.
T Pawelczyk  S Angielski 《Biochimie》1992,74(2):171-176
The effects of changing ionic strength on the activity of the 2-oxoglutarate dehydrogenase complex from pig kidney cortex were explored. This enzyme complex is found to be influenced in many ways by the ionic strength of the reaction medium. The enzyme shows an optimum activity at 0.1 M ionic strength. Increase in ionic strength from 0.1 M to 0.2 M resulted in a decrease of S0.5 for 2-oxoglutarate, and in an increase of S0.5 for NAD. Changes in ionic strength over the range of 0.05-0.2 M have little, if any, effect on S0.5 for CoA. The Hill coefficient for 2-oxoglutarate and NAD at 0.2 M ionic strength was 1.0, whereas at 0.05 M ionic strength it was 0.85 and 1.2 for 2-oxoglutarate and NAD, respectively. At 0.05 M ionic strength the pH optimum of the enzyme ranges between 7.4-7.6, but at 0.15 M ionic strength the pH optimum shifts to 7.8. The magnitude of inhibition of enzyme activity by ATP is not influenced by changes in ionic strength in the absence of calcium. However, in the presence of Ca2+, increases in ionic strength lower the inhibitory effects of ATP. The Si0.5 for ATP in both presence and absence of Ca2+ was not affected by changes in ionic strength in the range of 0.1-0.2 M. In contrast, the Sa0.5 for ADP in the absence of Ca2+ decreases as ionic strength increases. In the presence of calcium and 0.2 M ionic strength ADP has no effect on 2-oxoglutarate dehydrogenase complex activity.  相似文献   

19.
Highly purified human fibrinogen was dialyzed versus eleven different sodium salts at ionic strengths of 0.005–0.3 and pH values of 4.5–8.0. After equilibration and centrifugation of the protein solutions, fibrinogen solubilities were determined spectrophotometrically and were analyzed as functions of pH, ionic strength, and specific anion. Bell-shaped curves are obtained when fibrinogen solubility is plotted as a function of pH. The solubility exhibits a minimum at a given pH and rises at acid and alkaline values. As the ionic strength is increased, the solubility curves shift toward more acid pH values. At constant pH values between 6 and 7, fibrinogen solubility increases with an increase in ionic strength. At constant pH values below pH 6, a decrease in solubility occurs as the ionic strength is increased. The isoionic pH of a saturated aqueous fibrinogen solution has been determined to be 6.25, meaning that fibrinogen in pure water behaves as a weak acid with a mean net charge of ?0.9. At pH values acid to 6.25, the anions solubilize fibrinogen in the following order of increasing efficacy: thiocyanate, perchlorate, sulfate, citrate, bromide, nitrate, phosphate, chloride, acetate, fluoride, and formate. This order is reversed at pH values alkaline to 6.25. Anion binding parameters calculated from the solubility data indicate that those anions which most effectively solubilize fibrinogen at alkaline pH and precipitate it at acid pH have the highest apparent binding affinities for the protein. Anions with less pronounced solubility effects have lower binding affinities.  相似文献   

20.
Mitochondrial malate dehydrogenase (mMDH) shows a complex dependence upon ionic environment that includes kinetic and structural effects. We measured mMDH activity in several buffers (phosphate, MOPS, and MES) at pH 6.5 and 7.5, and in the presence of a number of anions, at highly diluted enzyme concentrations where mMDH showed significant loss of activity. Under these conditions, mMDH activity shows a non-linear dependence on enzyme concentration, in agreement with the existence of a dimer–monomer equilibrium, where only the dimeric form is active. According to this hypothesis, the dissociation constant of mMDH dimer has been determined to be 5.4 nM in the MES buffer at pH 6.5. Either the presence of a small anion like phosphate, or an increase of the pH from 6.5 to 7.5 shifts the equilibrium in favor of the dimeric form with the two effects appearing to be additive. To extend the study, we analysed the effect of a number of anions on the mMDH activity in 50 mM MOPS buffer at pH 7.5. All the anions had a dual effect: at low concentrations, they increased the activity of mMDH, while at high concentrations, they inhibited it. A more accurate analysis of the data revealed that the activation capacity of all the anions tested was similar, although they differed in their inhibitory influence. To show these differences more clearly, the experiment was repeated in 50 mM phosphate buffer at pH 7.5, under conditions where almost all activations were due to the buffer. The analysis of the results obtained under these conditions revealed the following sequence of inhibition potency: phosphate相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号