首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial outgrowth of neuritogenesis in mouse NB2a/d1 neuroblastoma cells may be regulated by thrombin or a thrombin-like protease, present either in serum or adsorbed to the plasma membrane, since neuritogenesis is induced by serum deprivation and treatment with the specific thrombin inhibitor, hirudin (Shea et al., 1991, J. Neurochem., 56:842). Cultured astroglial cells secrete factors that promote neuritogenesis, including protease inhibitors active against thrombin, leading to suggestions that the inhibition of specific neuronal surface proteases by the surrounding glial environment may represent an initial step in axonal outgrowth in situ. To examine the relative importance of glial-derived protease inhibitory activities on neurine outgrowth, we tested the neurite promoting effect of glial-conditioned medium (GCM) on NB2a/d1 cells. Like serum deprivation and hirudin treatment, GCM induced neurite outgrowth within 4 hr. Exogenous thrombin inhibited the effect of GCM, and cell-free enzyme assays confirmed the presence of thrombin-inhibitory activity in GCM, suggesting that GCM induces neuritogenesis by inhibition of a thrombin-like protease. Unlike neurites induced by serum removal or hirudin addition, which are rapidly resorbed following serum replenishment or hirudin depletion, however, GCM-induced neurites continued to elongate after GCM removal. Furthermore, cultures treated simultaneously with GCM and thrombin exhibited delayed outgrowth of neurites following GCM removal which were insensitive to further thrombin treatment. These findings indicate that the initial elaboration of neurites can be mediated by glial-derived protease inhibitor(s) active against a thrombin-like protease, but indicate the requirement of additional glial-derived factors for the maintenance and continued elaboration of these neurites.  相似文献   

2.
Abstract: We examined the interdependence of calpain and protein kinase C (PKC) activities on neurite outgrowth in SH-SY-5Y human neuroblastoma cells. SH-SY-5Y cells elaborated neurites when deprived of serum or after a specific thrombin inhibitor, hirudin, was added to serum-containing medium. The extent of neurite outgrowth under these conditions was enhanced by treatment of cells with the cell-permeant cysteine protease inhibitors N-acetyl-leucyl-leucyl-norleucinal (“C1”) and calpeptin or by the phospholipid-mediated intracellular delivery of either a recombinant peptide corresponding to a conserved inhibitory sequence of human calpastatin or a neutralizing anti-calpain antisera. Calpain inhibition in intact cells was confirmed by immunoblot analysis showing inhibition of calpain autolysis and reduced proteolysis of the known calpain substrates fodrin and microtubule-associated protein 1. The above inhibitory peptides and antiserum did not induce neurites in medium containing serum but lacking hirudin, suggesting that increased surface protein adhesiveness is a prerequisite for enhancement of neurite outgrowth by calpain inhibition. Treatment of cells with the PKC inhibitor H7, staurosporine, or sphingosine induced neurite outgrowth independently of serum concentration. Because calpain is thought to regulate PKC activity, we examined this potential interrelationship during neurite outgrowth. Simultaneous treatment with calpain and PKC inhibitors did not produce additive or synergistic effects on neurite outgrowth. PKC activation by 2-O-tetradecanoylphorbol 13-acetate (TPA) prevented and reversed both neurite initiation by serum deprivation and its enhancement by calpain inhibitors. Treatment of cells with the calpain inhibitor C1 retarded PKC down-regulation following TPA treatment. Cell-free analyses demonstrated the relative specificity of various protease and kinase inhibitors for calpain and PKC and confirmed the ability of millimolar calcium-requiring calpain to cleave the SH-SY-5Y PKC regulatory subunit from the catalytic subunit, yielding a free catalytic subunit (protein kinase M). These findings suggest that the influence of PKC on neurite outgrowth is downstream from that of surface adhesiveness and calpain activity.  相似文献   

3.
T B Shea  M L Beermann 《FEBS letters》1992,307(2):190-194
The relative contribution of two neuronal surface proteases, plasmin and a protease with thrombin-like specificity, on NB2a/dl neuroblastoma migration and neuritogenesis were examined. Exogenous plasmin induced cell body rounding and increased cell migration, but did not prevent or reverse neurite outgrowth. Inhibition of endogenous plasmin by its specific inhibitor, aprotinin, suppressed migration but did not induce neuritogenesis. Removal or inhibition of the thrombin-like protease by serum deprivation or hirudin addition, respectively, induced neurite outgrowth, as shown in our previous studies, but did not suppress migration. By contrast, trypsin induced simultaneous cell rounding and neurite retraction. These findings indicated that plasmin may regulate cell migration, while the thrombin-like protease may regulate facets of neurite outgrowth. Although unable to induce de novo neuritogenesis, plasmin inhibition potentiated the otherwise transient neurites induced by simultaneous inhibition of the thrombin-like protease. Since cultured neuronal cells migrate primarily in the direction of newly elaborated neurites, this finding is interpreted to indicate that cessation of neuronal migration by plasmin inhibition enhances net neurite outgrowth by inhibition of the putative thrombin-like protease.  相似文献   

4.
This review summarizes studies on the reciprocal regulation of neuroblastoma neurite outgrowth by thrombin and protease nexin-1 (PN-1). PN-1 recently was shown to possess the same deduced amino acid sequence as the glial-derived neurite-promoting factor. The neurite outgrowth activity of PN-1 depends on its ability to inhibit thrombin. Thrombin not only blocks the neurite outgrowth activity of PN-1, but it also brings about neurite retraction in the presence of PN-1. Thrombin also produces neurite retraction in the absence of PN-1 and other regulatory factors. This suggests that its activity is due to a direct action on cells. The neurite retraction by thrombin depends on its proteolytic activity. It does not occur with the other serine proteases that have been tested, indicating that it is a specific effect and is not due to a general proteolytic effect that could detach neurites from the culture dish. Serum brings about neurite retraction in certain neuroblastoma cells and primary neuronal cultures; most of this activity is due to residual thrombin in the serum. Together, these results suggest that PN-1 and thrombin (or a thrombin-like protease) play a role in regulation of neurite outgrowth.  相似文献   

5.
Protease nexin-1 (PN-1) is a protein proteinase inhibitor recently shown to be identical with the glial-derived neurite-promoting factor or glial-derived nexin. It has been shown to promote neurite outgrowth in neuroblastoma cells and in sympathetic neurons. The present experiments were designed to further test the hypothesis that this activity on neuroblastoma cells is due to its ability to complex and inhibit thrombin. It has been suggested that PN-1:thrombin complexes might mediate the neurite outgrowth activity of PN-1. However, the present studies showed that such complexes, unlike free PN-1, did not promote neurite outgrowth. The neurite outgrowth activity of PN-1 was only detected in the presence of thrombin or serum (which contains thrombin). PN-1 did not affect the rate or extent of neurite outgrowth that occurred when neuroblastoma cells were placed in serum-free medium. Retraction of neurites by thrombin was indistinguishable in cells whose neurites had been extended in the presence or absence of PN-1. The neurite-promoting activity of PN-1 was inhibited by an anti-PN-1 monoclonal antibody, which blocks its capacity to complex serine proteinases. The plasma thrombin inhibitor, antithrombin III, stimulated neurite outgrowth but only when its thrombin inhibitory activity was accelerated by heparin. The neurite outgrowth activity of both antithrombin III and PN-1 corresponded to their inhibition of thrombin. Together, these observations show that PN-1 promotes neurite outgrowth from neuroblastoma cells by inhibiting thrombin and suggest that this depends on the ability of thrombin to retract neurites.  相似文献   

6.
Platelet factor XIII is activated by calpain   总被引:2,自引:0,他引:2  
The action of calpain (EC 3.4.22.17; Ca2+-dependent cysteine proteinase) on platelet factor XIII has been studied. Calpain I activated platelet factor XIII up to 76% of the maximum level observed with thrombin. Activation was accompanied by the limited proteolysis of the a subunit of platelet factor XIII to produce a 76 kDa fragment which was comparable to the proteolytic product by thrombin. Activation of platelet factor XIII by calpain was inhibited by EDTA, leupeptin, and endogenous calpain-specific inhibitor calpastatin. These findings suggest that calpain is responsible for the intracellular activation of platelet factor XIII.  相似文献   

7.
方伟岗  王文京 《生理学报》1993,45(4):311-316
本实验研究了凝血酶抑制CHP-100原始神经外胚叶瘤细胞神经分化的信号传导机制。凝血酶能抑制CHP-100细胞在无血清培养中神经突起的生长,这种作用与凝血酶激活细胞内磷酸肌醇/钙离子信号传导途径有关。凝血酶明显刺激Ins(1,4,5)P3的产生及细胞内游离钙离子浓度的升高。凝血酶的抑制剂水蛭素能抑制凝血酶引起的钙离子反应,并能拮抗凝血酶抑制CHP-100细胞神经突起生长的作用。结果提示,凝血酶信号传导系统可能在神经系统生长发育中具有重要调节作用。  相似文献   

8.
We report here the possible involvement of a new protease in neurite initiation by PC12h cells. Addition of a leupeptin analogue (Ac-Leu-Leu-Nle-al, ALLNal) to PC12h cells on culture plates coated with collagen type I caused de novo neurite outgrowth. Other protease inhibitors (Ac-Leu-Leu-Met-al, leupeptin, E64c, E64d, soybean trypsin inhibitor, hirudin, aprotinin, diisofluorophosphate, 6-aminocapric acid, and pepstatin A) could not mimic this neurite-initiating action. ALLNal induced the initiation of one or two long neurites from the cell body, and increased the cellular level of acetylcholinesterase to an extent similar to nerve growth factor (NGF). However, ALLNal-induced neuritogenesis is different from that induced by NGF, in which many neurites are induced from a single cell body. In addition, in contrast to neurons induced by NGF, which survive for a long time, ALLNal-induced differentiation was transient, and after 48 h percentage of cells bearing neurites started to decrease. After about 120 h exposure to ALLNal, neurites had mostly disappeared and the acetylcholinesterase activity level was not as great as that produced by NGF. These results provide evidence that ALLNal and NGF elicit neurite initiation by different mechanisms, and suggest the existence of a regulatory system of neuronal differentiation through specific protease-protease inhibitor interaction.  相似文献   

9.
During dibutyryl cyclic AMP (dbcAMP)-mediated differentiation, axonal neurites elaborated by mouse NB2a/d1 neuroblastoma cells are initially colchicine-labile but attain colchicine-stability after 7 days. To examine whether or not differences in tubulin subunit turnover could account for the development of colchicine-stability, anti-tubulin antibodies were delivered into NB2a/d1 cells at various times during dbcAMP-mediated neurite outgrowth. These antibodies prevented initial neurite elaboration, and induced neurite retraction in cells treated with dbcAMP for up to 3 days, but did not induce neurite retraction for cells treated for 7 days. We conclude that a less dynamic, more slowly-turning over population of microtubules develops within neurites of cells treated with dbcAMP for 7 days.  相似文献   

10.
We investigated the regulation of arachidonic acid liberation catalyzed by group-IV cytosolic phospholipase A2 (cPLA2) in human platelets upon stimulation with thrombin through interaction with protease-activated receptor-1 (PAR-1) or glycoprotein Ib. Leupeptin, a protease inhibitor, completely inhibited thrombin-induced arachidonic acid liberation and Ca2+ mobilization, with inhibition of its protease activity. However, preincubation with thrombin in the presence of leupeptin potentiated Ca2+ ionophore-induced arachidonic acid liberation. The preincubation did not affect the intracellular Ca2+ level or cPLA2 activity in response to ionomycin. Human leukocyte elastase, which cleaves glycoprotein Ib, did not inhibit the enhancement of arachidonic acid liberation by thrombin in the presence of leupeptin. However, the effect of thrombin with leupeptin was abolished by a peptide corresponding to residues 54-65 of hirudin (hirudin peptide), which impairs the binding of thrombin to PAR-1. Furthermore, Phe-Pro-Arg chloromethyl ketone (PPACK)-thrombin, which binds to platelets but has no protease activity, also enhanced Ca2+ ionophore-induced arachidonic acid liberation. In contrast, trypsin with leupeptin did not mimic the effect of thrombin with leupeptin, and furthermore trypsin-induced arachidonic acid liberation was insensitive to hirudin peptide. On the basis of the present results, we suggest that thrombin may accelerate cPLA2-catalyzed arachidonic acid liberation through non-proteolytic action toward PAR-1 but not toward glycoprotein Ib in co-operation with the proteolytic action leading to Ca2+ mobilization.  相似文献   

11.
Inhibitors of calcium-dependent proteases (calpains) such as leupeptin and antipain have been shown to selectively inhibit platelet activation by thrombin. Based upon this observation, it has been proposed that calpains play a role in the initiation of platelet activation. In the present studies, we have examined the effect of leupeptin on the earliest known event in thrombin-induced platelet activation: the interaction between the agonist, its receptors, and the guanine nucleotide-binding proteins which stimulate phospholipase C (Gp) and inhibit adenylyl cyclase (Gi). We found that leupeptin inhibited thrombin's ability to stimulate phosphoinositide hydrolysis, suppress cAMP formation, and dissociate Gp and Gi into subunits. Leupeptin had no effect, however, on the same responses to other agonists or on thrombin binding to platelets. Although these observations might suggest, as others have concluded, that calpain is involved in the initiation of platelet activation by thrombin, we also found that: 1) substituting platelet membranes for intact platelets and decreasing the free Ca2+ concentration below the threshold required for calpain activation did not diminish the effects of leupeptin on phosphoinositide hydrolysis and cAMP formation, 2) washing the platelets after incubation with leupeptin reversed the effects of the inhibitor, 3) permeabilizing the platelets with saponin did not enhance the inhibitory effects of leupeptin, and 4) leupeptin inhibited the proteolysis of fibrinogen and the hydrolysis of S2238 by thrombin. Similar results in these assays were obtained with antipain. Therefore, our observations suggest that the inhibition of platelet activation by leupeptin is due to a direct interaction with thrombin and need not reflect a role for calpain in the initiation of platelet activation.  相似文献   

12.
The mechanism(s) by which heparin influences the biological activities of acidic and basic fibroblast growth factors (aFGF and bFGF) is not completely understood. One mechanism by which heparin could alter the biological activities of aFGF and bFGF is by altering their biological half-lives. We investigated the possibility that heparin potentiates aFGF-induced neurite outgrowth from PC12 cells by prolonging its biological half-life. Under conditions where heparin potentiated aFGF-induced neurite outgrowth, we observed that heparin increased the biological half-life of aFGF from 7 to 39 hr. We determined that greater than 25 hr of exposure to active aFGF was required for induction of neurite outgrowth. If aFGF activity was maintained for greater than 25 hr by periodic readdition of factor, heparin no longer potentiated aFGF-induced neurite outgrowth. These observations strongly suggest that heparin potentiates the activity of aFGF by prolonging its biological half-life. The protease inhibitors hirudin, leupeptin, and pepstatin A did not potentiate aFGF-induced neurite outgrowth, indicating that proteases inhibited by these inhibitors are not responsible for the loss of aFGF activity that we observed. However, aprotinin potentiated aFGF neurite-promoting activity approximately sevenfold, indicating that proteases that are inhibited by aprotinin are at least partially responsible for aFGF inactivation. These observations suggest that heparin regulates the activity of aFGF by regulating its proteolytic degradation, thereby regulating its biological half-life.  相似文献   

13.
In larval lamprey, descending brain neurons, which regenerate their axons following spinal cord injury, were isolated and examined in cell culture to identify some of the factors that regulate neurite outgrowth. Focal application of 5 mM or 25 mM L-glutamate to single growth cones inhibited outgrowth of the treated neurite, but other neurites from the same neuron were not inhibited, an effect that has not been well studied for neurons in other systems. Glutamate-induced inhibition of neurite outgrowth was abolished by 10 mM kynurenic acid. Application of high potassium media to growth cones inhibited neurite outgrowth, an effect that was blocked by 2 mM cobalt or 100 microM cadmium, suggesting that calcium influx via voltage-gated channels contributes to glutamate-induced regulation of neurite outgrowth. Application of glutamate to growth cones in the presence of 2 microM omega-conotoxin MVIIC (CTX) still inhibited neurite outgrowth, while CTX blocked high potassium-induced inhibition of neurite outgrowth. Thus, CTX blocked virtually all of the calcium influx resulting from depolarization. To our knowledge, this is the first direct demonstration that calcium influx via ligand-gated ion channels can contribute to regulation of neurite outgrowth. Finally, focal application of glutamate to the cell bodies of descending brain neurons inhibited outgrowth of multiple neurites from the same neuron, and this is the first demonstration that multiple neurites can be regulated in this fashion. Signaling mechanisms involving intracellular calcium, similar to those shown here, may be important for regulating axonal regeneration following spinal cord injury in the lamprey.  相似文献   

14.
Two inhibitors of the calcium-dependent cysteine protease, calpain, have markedly different effects on the extent of hypertrophy induced by the alpha-adrenergic agonist, phenylephrine, of cultured neonatal rat ventricular myocytes. E64c, an inhibitor of calpain and other cysteine proteases, stimulated the hypertrophy by 59%. PD 150606, a specific calpain inhibitor, reduced the hypertrophy by 38%. Phenylephrine decreased the proteolysis of a calpain substrate by the cells 1–2 h after its addition but not at 24 h. PD 150606 inhibited proteolytic activity at all times, and the combination of phenylephrine and PD 150606 did not give greater inhibition. This suggests that cysteine proteases of the papain sub-family are involved with the hypertrophic response at two points, promoting hypertrophy at the first and limiting it at the second. Calpain appears to be the protease involved at the first point, and there may be another cysteine protease acting at the second site.  相似文献   

15.
The endogenous calpain inhibitor, calpastatin, modulates some patho-physiological aspects of calpain signaling. Excess calpain can escape this inhibition and as well, many calpain isoforms and autolytically generated protease core fragments are not inhibited by calpastatin. There is a need, therefore, to develop specific, cell-permeable calpain inhibitors to block uncontrolled proteolysis and prevent tissue damage during brain and heart ischemia, spinal-cord injury and Alzheimer's diseases. Here, we report the first high-resolution crystal structures of rat mu-calpain protease core complexed with two traditional, low molecular mass inhibitors, leupeptin and E64. These structures show that access to a slightly deeper, but otherwise papain-like active site is gated by two flexible loops. These loops are divergent among the calpain isoforms giving a potential structural basis for substrate/inhibitor selectivity over other papain-like cysteine proteases and between members of the calpain family.  相似文献   

16.
Synthesis of a new cell penetrating calpain inhibitor (calpeptin)   总被引:15,自引:0,他引:15  
N-terminal of Leu-norleucinal or Leu-methioninal was modified to obtain a cell penetrative peptide inhibitor against calpain. Benzyloxycarbonyl (Z) derivatives had less active against papain than phenylbutyryl derivatives and leupeptin. Z-Leu-nLeu-H (calpeptin) was more sensitive to calpain I than Z-Leu-Met-H and leupeptin. Calpeptin was most potent among synthesized inhibitors in terms of preventing the Ca2+-ionophore induced degradation of actin binding protein and P235 in intact platelets. After 30 min incubation with intact platelets, calpeptin completely abolished calpain activity in platelets but no effect was observed in case of leupeptin. Calpeptin also inhibited 20K phosphorylation in platelets stimulated by thrombin, ionomycin or collagen. Thus calpeptin was found to be a useful cell-penetrative calpain inhibitor.  相似文献   

17.
Neuroserpin is a serine protease inhibitor widely expressed in the developing and adult nervous systems and implicated in the regulation of proteases involved in processes such as synaptic plasticity, neuronal migration and axogenesis. We have analysed the effect of neuroserpin on growth factor-induced neurite outgrowth in PC12 cells. We show that small changes in neuroserpin expression result in changes to the number of cells extending neurites and total neurite length following NGF treatment. Increased expression of neuroserpin resulted in a decrease in the number of cells extending neurites and a reduction in total free neurite length whereas reduced levels of neuroserpin led to a small increase in the number of neurite extending cells and a significant increase in total free neurite length compared to the parent cell line. Neuroserpin also altered the response of PC12 cells to bFGF and EGF treatment. Neuroserpin was localised to dense cored secretory vesicles in PC12 cells but was unable to complex with its likely enzyme target, tissue plasminogen activator at the acidic pH found in these vesicles. These data suggest that modulation of neuroserpin levels at the extending neurite growth cone may play an important role in regulating axonal growth.  相似文献   

18.
This study examined whether the neurointermediate lobe (NIL) of the rat pituitary contains latent kallikrein- and thrombin-like proteases activated by trypsin. Partial characterization of such proteases was attempted. Also examined were the distribution of proteolytic activity within the NIL and levels in both male and female lobes. NIL homogenates were assayed for proteolytic activity at pH 8.0 before and after incubation with trypsin (10 micrograms/ml). Trypsin caused a 10-fold activation of kallikrein-like activity and a 40-fold activation of thrombin-like activity in NIL homogenates. The kallikrein-like activity was separated into two components using diethylaminoethyl-Sephadex. The predominant kallikrein-like protease was a potent kininogenase closely related or identical to glandular kallikrein and was almost exclusively localized to the intermediate lobe. The second kallikrein-like protease (kallikrein A) was a weak kininogenase sensitive to inhibition by both soybean trypsin inhibitor and aprotinin and was similarly concentrated in both the neural lobe and the intermediate lobe. The thrombin-like protease was sensitive to inhibition by hirudin (a specific thrombin inhibitor), clotted fibrinogen, and was slightly more concentrated in the neural lobe than in the intermediate lobe. NILs from female rats contained approximately 40% less kallikrein activity than NILs from male rats but did not differ in their content of thrombin-like activity.  相似文献   

19.
The carboxy-terminal ends of the 40- and 42-amino acids amyloid beta-protein (Abeta) may be generated by the action of at least two different proteases termed gamma(40)- and gamma(42)-secretase, respectively. To examine the cleavage specificity of the two proteases, we treated amyloid precursor protein (APP)-transfected cell cultures with several dipeptidyl aldehydes including N-benzyloxycarbonyl-Leu-leucinal (Z-LL-CHO) and the newly synthesized N-benzyloxycarbonyl-Val-leucinal (Z-VL-CHO). All dipeptidyl aldehydes tested inhibited production of both Abeta1-40 and Abeta1-42. Changes in the P1 and P2 residues of these aldehydes, however, indicated that the amino acids occupying these positions are important for the efficient inhibition of gamma-secretases. Peptidyl aldehydes inhibit both cysteine and serine proteases, suggesting that the two gamma-secretases belong to one of these mechanistic classes. To differentiate between the two classes of proteases, we treated our cultures with the specific cysteine protease inhibitor E-64d. This agent inhibited production of secreted Abeta1-40, with a concomitant accumulation of its cellular precursor indicating that gamma(40)-secretase is a cysteine protease. In contrast, this treatment increased production of secreted Abeta1-42. No inhibition of Abeta production was observed with the potent calpain inhibitor I (acetyl-Leu-Leu-norleucinal), suggesting that calpain is not involved. Together, these results indicate that gamma(40)-secretase is a cysteine protease distinct from calpain, whereas gamma(42)-secretase may be a serine protease. In addition, the two secretases may compete for the same substrate. Dipeptidyl aldehyde treatment of cultures transfected with APP carrying the Swedish mutation resulted in the accumulation of the beta-secretase C-terminal APP fragment and a decrease of the alpha-secretase C-terminal APP fragment, indicating that this mutation shifts APP cleavage from the alpha-secretase site to the beta-secretase site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号