首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The jejuno-ileal variation of amino and imino acid transport across the brush-border membrane of intact rabbit small intestine was studied. For the amino acids tested--beta-alanine, leucine, lysine, MeAIB, proline--and for D-glucose, the rates of transport at constant concentrations increase from very low values in the proximal jejunum to maximum values in the most distal 30 cm of the ileum. The apparent affinity constant for jejunal taurine transport is identical to that of the distal ileum, while the jejunal transport capacity is less than half. In the jejunum, as in the distal ileum, leucine and lysine share both sodium-dependent and sodium-independent carriers. Approx. 50% of the quantitative difference in transport capacity is accounted for by the absence of the beta-alanine carrier in the jejunum. These data indicate that the gradients of transport along the small intestine reflect gradients of transport capacities rather than affinities. In comparison with hamster, man and rat, the rabbit seems unique with respect to the location of transport maximum and the steepness of the gradient along the intestine.  相似文献   

2.
For rabbit jejunal brush border vesicles an 'imino carrier' has been defined as a sodium-dependent, alanine-resistant transporter of cyclic imino acids, while for intact rabbit jejunal and ileal epithelia an 'imino acid carrier' has been defined as a sodium-dependent transporter of both aliphatic and cyclic imino acids. This study on intact rabbit intestine examines whether these two terms describe the same epithelial function. The KPro1/2 and the KProi against JMeAIBmc are identical and so are KMeAIB1/2 and KMeAIBi against JPromc. Likewise, KLeui is the same against the transport of both proline and MeAIB. It is, therefore, concluded that the terms 'imino carrier' and 'imino acid carrier' describe the same epithelial function: A sodium-dependent, relatively high afinity, saturable transporter of both aliphatic and cyclic imino acids. Estimates of the apparent affinity and inhibitory constants for MeAIB, proline and leucine confirm that the jejuno-ileal variation of amino acid transport along the rabbit small intestine is a variation of maximal transport capacity.  相似文献   

3.
Amino acids enter rabbit jejunal brush border membrane vesicles via three major transport systems: (1) simple passive diffusion; (2) Na-independent carriers; and (3) Na-dependent carriers. The passive permeability sequence of amino acids is very similar to that observed in other studies involving natural and artificial membranes. Based on uptake kinetics and cross-inhibition profiles, at least two Na-independent and three Na-dependent carrier-mediated pathways exist. One Na-independent pathway, similar to the classical L system, favors neutral amino acids, while the other pathway favors dibasic amino acids such as lysine. One Na-dependent pathway primarily serves neutral L-amino acids including 2-amino-2-norbornanecarboxylic acid hemihydrate (BCH), but not beta-alanine or alpha-methylaminoisobutyric acid (MeAIB). Another Na-dependent route favors phenylalanine and methionine, while the third pathway is selective for imino acids and MeAIB. Li is unable to substitute for Na in these systems. Cross-inhibition profiles indicated that none of the Na-dependent systems conform to classical A or ACS paradigms. Other notable features of jejunal brush border vesicles include (1) no beta-alanine carrier, and (2) no major proline/glycine interactions.  相似文献   

4.
A novel imino-acid carrier in the enterocyte basolateral membrane   总被引:1,自引:0,他引:1  
Basolateral membrane vesicles prepared from rat small intestinal epithelial cells were used to study the sodium-independent transport of L-proline. The uptake of L-proline was unaffected by the presence of sodium and showed saturation kinetics (Kt = 0.5 mM and Vmax = 23.3 pmol/mg protein per s). Competition experiments indicated that other amino acids had an affinity for the carrier system with L-leucine greater than L-alanine greater than sarcosine greater than glycine greater than L-lysine greater than OH-proline greater than taurine greater than beta-alanine greater than D-alanine greater than D-proline greater than L-serine greater than phenylalanine greater than valine greater than D-serine greater than phenylalanine greater than valine greater than D-serine greater than MeAIB greater than methionine greater than threonine. This pathway does not resemble those previously described either in the brush-border membrane of intestinal epithelial cells or the plasma membrane of other cell types. The lack of effect of methionine and threonine indicate that proline is not using the L-type system, while the very low affinity for MeAIB and the Na+ independence suggest that this is a novel system for imino acids. The relatively high capacity of this system and its low Kt, which is almost identical to the proline system in the brush-border membrane, strongly suggest that this is an important pathway in the final step for proline absorption by the small intestine.  相似文献   

5.
Sodium-dependent beta-alanine uptake into dog renal brush-border membrane vesicles was studied. Kinetic analysis indicated a single transport system, highly specific for beta-amino acids, with Km = 35 microM at 100 mM NaCl. Sodium-dependent beta-alanine transport was markedly anion-dependent, being highest in the presence of chloride (Cl greater than Br greater than SCN greater than NO3 approximately I greater than F) and virtually nonexistent in the presence of gluconate and other nonphysiological chloride substitutes. In addition, it was observed that beta-alanine uptake could be driven against a concentration gradient by a chloride gradient. Similar results were found for sodium. Taken together, these observations provide strong evidence that beta-alanine transport across the renal brush-border membrane is coupled to both sodium and chloride. Studies of the dependence of beta-alanine flux on chloride and sodium concentrations indicated that one chloride ion and multiple sodium ions were involved in the beta-alanine transport event. beta-Alanine flux on chloride found to involve the net transfer of positive charge, consistent with these stoichiometric assignments. The hallucinogen harmaline inhibited beta-alanine uptake in a 1:1 fashion, presumably by acting at a single site on the transport molecule. The ability of harmaline to inhibit beta-alanine uptake was decreased when the chloride concentration was lowered but was unchanged when the sodium concentration was decreased. These results indicate that harmaline does not compete with sodium for a binding site on the carrier as has been suggested for other sodium-coupled transport systems, and that instead, chloride may be required for harmaline binding to the beta-alanine transporter.  相似文献   

6.
Rat brain capillaries exhibit concentrative uptake of L-proline. The uptake is mediated by two saturable systems, one with a Km of 0.11 mM and another with a Km of 5.9 mM. Entry also occurred by diffusion, especially at high substrate concentrations. The saturable high-affinity system is sodium-dependent, with a Km for sodium of 36 mM. Proline uptake is not inhibited by lysine, but is inhibited by phenylalanine, glycine, and leucine. alpha-Methylaminoisobutyric acid (MeAIB), a model for sodium-requiring transport systems, is a competitive inhibitor of the low-Km system. b-2-Aminobicyclo-[2,2,1]-heptane-2-carboxylic acid (BCH), a model for nonsodium-dependent transport, however, also inhibited proline uptake.  相似文献   

7.
The transport of imino and non-alpha-amino acids across the brush-border membrane of the guinea-pig small intestine has been examined. It was found that the guinea pig is without a transport system for non-alpha-amino acids. The transport of imino acids was characterized using methylaminoisobutyrate (MeAIB) as a substrate. This choice was validated by lack of kinetic evidence that more than one transport system was involved in the transport of MeAIB, by the identical values of the estimates of the passive permeability of MeAIB, the magnitude of its proline-resistant transport, and the permeability of mannitol. The transport system for MeAIB is moderately stereospecific. It does not accept cationic amino acids. It accepts alpha-amino-monocarboxylic acids but N-methylation increases the affinities of these amino acids by an order of magnitude. The length of the side-chain of the aliphatic imino acids seems of little importance for the affinity for the transport system, but the data on inhibition of the transport of MeAIB by proline and piperidine-2-carboxylic acid indicate that it is sharply increased by ring formation.  相似文献   

8.
The efflux and exchange of beta-alanine were studied in synaptic plasma membrane vesicles from rat brain. The mechanism of beta-alanine translocation has been probed by comparing the ion dependence of net efflux to that of exchange. Dilution-induced efflux requires the simultaneous presence of internal sodium and chloride ions while influx is dependent on the presence of these two ions on the outside [Zafra, F., Aragón, M. C., Valdivieso, F. and Giménez, C. (1984) Neurochem Res. 9, 695-707]. These data show that the release of beta-alanine occurs via the carrier system and that it is cotransported with sodium and chloride ions. beta-Alanine efflux from the membrane vesicles is stimulated by external beta-alanine. This exchange does not require external sodium and chloride but it is dependent on the external concentration of beta-alanine. Half-maximal stimulation is obtained at a beta-alanine concentration similar to the Km for beta-alanine influx. Results of the direct measurements of the coupling of sodium and chloride to the transport of beta-alanine by using a kinetic approach allow us to propose a stoichiometry for the translocation cycle catalyzed by the beta-alanine transporter of three sodium ions and one chloride ion per beta-alanine zwitterion. To account for all the observed effects of external ions, beta-alanine concentrations and membrane potential on beta-alanine influx and efflux, a kinetic model of the Na+/Cl-/beta-alanine cotransport system is discussed.  相似文献   

9.
Sodium-amino acid cotransport by type II alveolar epithelial cells   总被引:2,自引:0,他引:2  
Type II alveolar epithelial cell monolayers have been shown to actively transport sodium (Na+). Coupling to amino acid uptake could be an important mechanism for Na+ entry into these cells. This study demonstrates the presence of such a coupled cotransport mechanism in the plasma membrane of isolated type II cells by use of the nonmetabolizable amino acid analogue alpha-methylaminoisobutyric acid (MeAIB). Transport of MeAIB in 137 mM Na+ is saturable, with the uptake constant (Vmax) equaling 13.9 pmol X mg prot-1 X s-1 and the Michaelis-Menten constant (Km) equaling 0.13 mM. In the presence of Na+, MeAIB is accumulated against a concentration gradient. MeAIB uptake in the absence of Na+ is linear with MeAIB concentration, as expected for simple diffusion. The Hill coefficient for Na+-MeAIB cotransport is 1.11, suggesting a 1:1 stoichiometry. Proline inhibits Na+-MeAIB cotransport, with Ki equaling 0.5 mM. These findings suggest that Na+-amino acid cotransport may be an important pathway for Na+ (and/or amino acid) uptake into type II alveolar epithelial cells.  相似文献   

10.
When amino acids that are generally transported through the A system are added to derepressed cultures of CHO-K1 cells or to cultures that are undergoing starvation-derepression, as in the co-repressor (co-r), co-inactivator (co-i), (co-ri) assay, the A system undergoes trans-inhibition, inactivation, and repression. The effect of inactivation and repression is not related to the ability of amino acids to bind to the A system transporter but supports a model in which these amino acids act as co-r's/co-i's, and by binding to a aporepressor/inactivator (apo-ri), the product of gene R1, convert it into a repressor/inactivator (ri). For example, beta-alanine acts as a strong co-r but does not inhibit proline transport through the A system. Hydroxyproline and histidine, although poor inhibitors of proline transport, are very effective as co-ri's. Diaminobutyrate, phenylalanine, alpha-keto-glutarate, pyro-glutamate, isoleucine, and valine, compounds that inhibit A system transport, listed in decreasing order of effectiveness, are all equally poor as co-ri's. Also the Km for the transport of 2-(methylamino)isobutyric acid (MeAIB) through the A system is two times the concentration of MeAIB required to produce one-half inactivation. Amino acid effectors and mutation can modify the conversion of the apo-ri to repressor (r) and inactivator (i). The apo-ri is converted by alanine, serine, proline, and MeAIB to ri, by beta-alanine and tryptophane to r, and by hydroxyproline to r and reduced i. The full constitutive and partial constitutive mutants alar4 and alar2, respectively, are in the same complementation group. Alar4 has no active apo-ri while the rate of derepression of alar2 is twice and the inactivation rate is equal to that of the parent culture.  相似文献   

11.
The ability of rabbit jejunal brush borders to transport inhibitors of the imino carrier was investigated in membrane vesicles by measuring their ability to depolarize the membrane potential. Membrane potentials were monitored using a voltage-sensitive cyanine dye. Piperidine and pyrrolidine carboxylic acids, which are potent inhibitors of Na+-dependent proline transport (Ki less than 0.5 mM) depolarize the potential in a Na+-dependent, saturable manner indicating transport. On the other hand, N-methylated amino acids, which are fair inhibitors (Ki 2-10 mM), do not depolarize the membrane to any significant extent, but they competitively inhibit the L-proline transport signal. This indicates that these analogs are nontransported inhibitors of the imino carrier. The poor inhibitors niacin and pipolinic acid (Ki greater than 60 mM) depolarize the membrane about twice as much as proline and with low Kf values. This suggests separate carriers for these substrates.  相似文献   

12.
The effects of the histidine modifier, diethyl pyrocarbonate (DEPC), on brush-border membrane transport systems were studied in rat kidney. DEPC caused a strong inhibition of sodium-dependent phosphate and D-glucose uptake. Phosphate uptake remained linear up to 10 s in control and DEPC-treated membrane vesicles. The D-glucose carrier was more sensitive than the phosphate carrier with half-times of inhibition being 4 and 7 min, respectively. Sodium-independent phosphate and D-glucose uptake remained unaffected by DEPC. Intravesicular volume and two enzyme activities endogenous to the luminal membrane (alkaline phosphatase and aminopeptidase M) remained unaffected by DEPC. Increasing the preincubation pH from 5 to 9 increased phosphate transport inhibition caused by DEPC from 73 to 88% in the presence of DEPC. Hydroxylamine was able to completely reverse phosphate uptake inhibition by DEPC (100%), but only partially reversed the D-glucose uptake inhibition (16%). Sodium or substrate (D-glucose or phosphate) in the preincubation media were unable to protect their respective carriers from DEPC. Sodium-dependent transport of L-glutamine, L-phenylalanine, L-leucine, L-alanine, L-glycine, beta-alanine and L-proline were inhibited at different levels ranging from 70 to 90%. Three transport processes were found insensitive to DEPC modification: L-glutamate, L-lysine and D-fructose. None of the amino acid transporters was protected against DEPC by sodium and/or their respective substrates. Sodium influx was inhibited by DEPC (47%) in the absence of any substrate. Our results show a differential sensitivity of sodium-dependent transporters to DEPC and suggest an important role for histidine residues in the molecular mechanisms of these transporters. More experiments are in progress to further characterize the residue(s) involved in these transport inhibitions by DEPC.  相似文献   

13.
Wang HS  Wasa M  Okada A 《Life sciences》2002,71(2):127-137
Insulin-like growth factor I (IGF-I) and IGF-II stimulate cancer cell proliferation via interaction with the type I IGF receptor (IGF-IR). We put forward the hypothesis that IGF-IR mediates cancer cell growth by regulating amino acid transport, both when sufficient nutrients are present and when key nutrients such as glutamine are in limited supply. We examined the effects of alphaIR3, the monoclonal antibody recognizing IGF-IR, on cell growth and amino acid transport across the cell membrane in a human neuroblastoma cell line, SK-N-SH. In the presence of alphaIR3 (2 micro/ml), cell proliferation was significantly attenuated in both control (2 mM glutamine) and glutamine-deprived (0 mM glutamine) groups. Glutamine deprivation resulted in significantly increased glutamate (system X(AG)(-)), MeAIB (system A), and leucine (system L) transport, which was blocked by alphaIR3. Glutamine (system ASC) and MeAIB transport was significantly decreased by alphaIR3 in the control group. Addition of alphaIR3 significantly decreased DNA and protein biosynthesis in both groups. Glutamine deprivation increased the IGF-IR protein on the cell surface. Our results suggest that activation of IGF-IR promotes neuroblastoma cell proliferation by regulating trans-membrane amino acid transport.  相似文献   

14.
Amino acid homeostasis depends on specific amino acid transport systems, many of which have been characterized at the molecular level. However, the classical System IMINO, defined as the Na+-dependent proline transport activity that escapes inhibition by alanine, had not been identified at the molecular level. We report here the functional characteristics and tissue distribution of Sodium/Imino-acid Transporter 1 (SIT1), which exhibits the properties of classical System IMINO. SIT1, the product of the slc6a20 gene, is a member of the SLC6 Na+- and Cl--dependent neurotransmitter transporter family whose function has remained unknown. When expressed in Xenopus oocytes, rat SIT1 mediated the uptake of imino acids such as proline (K0.5 approximately 0.2 mM) and pipecolate, as well as N-methylated amino acids (e.g. MeAIB, sarcosine). SIT1-mediated proline transport was pH-independent and insensitive to inhibition by alanine or lysine. Proline transport was Na+-dependent, Cl--stimulated, and voltage-dependent. Li+, but not H+, could substitute for Na+. Human SIT1 also functioned as a Na+-dependent proline transporter. Rat SIT1 mRNA was expressed in epithelial cells of duodenum, jejunum, ileum, stomach, cecum, colon, and kidney proximal tubule S 3 segments. SIT1 mRNA was also expressed in the choroid plexus, microglia, and meninges of the brain and in the ovary. Previous reports have documented the marked urinary hyperexcretion of proline in newborn rodents and man. We found that SIT1 was dramatically up-regulated in the kidneys of 3-day-old mice, accounting for the maturation of proline reabsorption in the mouse. The human slc6a20 gene coding SIT1 is an appropriate target for investigation of hereditary forms of iminoaciduria in man.  相似文献   

15.
Taurine (2-aminoethanesulfonic acid) is a unique sulfur amino acid derivative that has putative nutritional, osmoregulatory, and neuroregulatory roles and is highly concentrated within a variety of cells. The permeability of Percoll density gradient purified rat liver lysosomes to taurine was examined. Intralysosomal amino acid analysis showed trace levels of taurine compared to most other amino acids. Taurine uptake was Na(+)-independent, with an overshoot between 5-10 minutes. Trichloroacetic acid extraction studies and detergent lysis confirmed that free taurine accumulated in the lysosomal space. Kinetic studies revealed heterogeneous uptake with values for Km1 = 31 +/- 1.82 and Km2 greater than 198 +/- 10.2 mM. The uptake had a pH optimal of 6.5 and was stimulated by the potassium specific ionophore valinomycin. The exodus rate was fairly rapid, with a t1/2 of 5 minutes at 37 degrees C. Analog inhibition studies indicated substrate specificity similar to the plasma membrane beta-alanine carrier system, with inhibition by beta-alanine, hypotaurine, and taurine. alpha-Alanine, 2-methylaminoisobutyric acid (MeAIB), and threonine were poor inhibitors. No effects were observed with sucrose and the photoaffinity derivative of taurine NAP-taurine [N-(4-azido-2-nitrophenyl)-2-aminoethanesulfonate]. In summary, rat liver lysosomes possess a high Km system for taurine transport that is sensitive to changes in K+ gradient and perhaps valinomycin induced diffusional membrane potential. These features may enable lysosomes to adapt to changing intracellular concentrations of this osmotic regulatory substance.  相似文献   

16.
This study describes evidence for the existence of a H+/glycine symport system in rabbit renal brush-border membrane vesicles. An inward proton gradient stimulates glycine transport across the brush-border membrane, and this H+-driven glycine uptake is attenuated by the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone. It is a positive rheogenic process, i.e. the H+-dependent glycine uptake is further enhanced by an intravesicular negative potential. Glycine uptake is stimulated to a lesser degree by an inward Na+ gradient. H+-dependent glycine uptake is inhibited by sarcosine (69%), an analog amino acid, imino acids (proline 81%, hydroxy proline 67%), and beta-alanine (31%), but not by neutral (L-leucine) or basic (L-lysine) amino acids. The results demonstrate that H+ glycine co-transport system in rabbit renal brush-border membrane vesicles is a carrier-mediated electrogenic process and that transport is shared by imino acids and partially by beta-alanine.  相似文献   

17.
Sodium dependence of leucine transport, a measure of the Na+-coupled leucine-isoleucine-valine II (LIV-II) transport system in Pseudomonas aeruginosa, was compared between two wild-type strains, PAO and PML. The leucine transport activity was saturated at 0.1 mM NaCl for PAO and at 5.0 mM for PML. From kinetics experiments, the apparent Km value for Na+ with respect to leucine transport was estimated to be 3 microM for PAO and 95 microM for PML. The Km value for leucine was 6 microM for PAO and 13 microM for PML. The LIV-II carrier gene (braB) of PML was isolated for comparison of its amino acid sequence with that of the PAO carrier cloned previously. The Km values for Na+ and leucine of the cloned LIV-II carriers of PAO and PML expressed in LIV-II defective mutants were similar to those in wild-type strains. Determination of the nucleotide and deduced amino acid sequences of the LIV-II carrier gene of PML showed an amino acid difference at position 292 between the PAO and PML carriers. The amino acid was threonine for PAO and alanine for PML. These results indicate that the substitution of the amino acid at position 292 of the LIV-II carrier causes a difference in the sodium requirement of the carriers of the PAO and PML strains.  相似文献   

18.
Using brush-border membrane (BBM) vesicles prepared from the intestine of the European eel, the specificity of L-alanine and L-proline Na+-dependent transport was investigated by measuring the uptake of isotopically labelled substrates. In the presence of Na+ ions, cross-inhibition between alanine and proline transports was observed; in addition alpha-(methylamino)isobutyric acid (MeAIB) inhibited proline but had no effect on alanine uptake. These results can be explained by the presence, in eel intestinal BBM vesicles, of at least two distinct agencies for Na+-dependent proline and alanine translocation. The first system is specific for alanine and short-chain neutral amino acids; the second system, specific for imino acids and the N-methylated analogues, is regulated by alanine concentration.  相似文献   

19.
We have developed a method for the isolation of transport mutants with increases in velocity of transport through the A and ASC systems and through a newly discovered P system utilizing the amino acid antagonism between A system amino acids and proline in CHO-K1 pro- cells. Mutants alar2 and alar3, isolated in a single-step procedure, resistant to 25 mM alanine in MEM-10 plus 0.05 mM proline are pro-, stable, cross resistant to alpha-(methylamino)isobutyric acid (MeAIB) and show an approximately twofold increase in the initial velocity of proline uptake. Ethyl methane sulfonate (EMS) increases the frequency of pro- alar clones in the population by at least 50 times the spontaneous frequency. The increased velocity of proline transport by alar2 and alar3 can be attributable to the 1.5 to 3 times increase in velocity of transport of proline through systems A, ASC, and P. The Vmax for proline transport through the A system has increased two times for alar2 while the Km and Vmax for alar3 has increased by 1.4 and 2.3 times that of CHO-K1. There is a corresponding increase in Vmax of proline transport by alar2 through the P system. The P system is defined operationally as that portion of the Na+-dependent velocity that remains when the A, ASC, and glutamine-inhibitable fraction are eliminated. The system is concentrative. Proline appears to be the preferred substrate. Li+ cannot be substituted for Na+. The system is moderately dependent upon pH. It obeys Michaelis-Menten kinetics and is not derepressible by starvation. There is no evidence for an N system in CHO-K1.  相似文献   

20.
Monolayers of the Caco-2 human intestinal cell line exhibit active and passive uptake systems for the imino acid L-proline. The active transport component is saturable and it is responsible for about two thirds of the observed flux over the nanomolar concentration range, at 37 degrees C and pH 7.4. In contrast to L-phenylalanine, specific L-proline uptake has a high degree of sodium dependency and the efficiency of the carrier system is significantly reduced when protein synthesis (cycloheximide), Na+/K(+)-ATPase (ouabain) or cellular metabolism (sodium azide) are inhibited. The expression of the L-proline carrier by Caco-2 cells was under some degree of nutritional control. Glucose deficiency, over the time scale of the experiment, had no effect. The temperature-dependence of the specific uptake process followed the Arrhenius model with an apparent activation energy of 93.5 kJ nmol-1. This pathway also displayed Michaelis-Menten concentration-dependence with a Ksdm of 5.28 mM and a maximal transport flux (Jsdmax) of 835 pmol min-1 (10(6) cells)-1. Although the passive component was unchanged, the pH of the donor phase exerted a profound effect on the active carrier component. Within the physiological pH range a local maximum efficiency was found at pH 7.4 but dramatic increases were noted as pH 5.0 was approached. In competition studies, with 100-fold excess of a second amino acid, strong inhibition of uptake was found with alpha-aminoisobutyric acid, L-alanine and L-serine whereas moderate inhibition was observed with glycine, D-proline and gamma-aminoisobutyric acid. Aromatic and branched amino acids showed weak (L-valine) or no interaction (L-phenylalanine, L-leucine) with the carrier system. These data indicate that the carrier system for the uptake of L-proline has many features in common with the A system for amino acid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号