首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HeLa cell “5.8 S” ribosomal RNA was digested with T1 ribonuclease and the digestion products were characterized. In particular several hexa-, or larger, oligonucleotides were well fractionated by T1 ribonuclease plus alkaline phosphatase fingerprints. The sequences of these large products were determined. The same large products were identified in fingerprints of “native” 28 S RNA, that is, 28 S RNA to which 5.8 S RNA is attached. The products were demonstrably absent in fingerprints of heat-denatured 28 S RNA, which lacks the 5.8 S fragment. The oligonucleotides were present in fingerprints of 32 S RNA, whether previously heated or not. One of the largest 5.8 S oligonucleotides contains an alkali-stable (2′-O-methylated) dinucleotide, Gm-C. This product was identified in fingerprints of methyl-labelled 45 S RNA. These findings prove that the 5.8 S ribosomal sequence is present within HeLa cell ribosomal precursor RNA. In addition to the methylated nucleotide, two pseudouridylate residues were discovered in HeLa cell 5.8 S RNA.  相似文献   

2.
A factor isolated from rabbit reticulocyte white ghosts by Triton X-100 treatment blocks protein synthesis at the elongation-termination stage. Factor-treated ribosomes were found to have an identical buoyant density to that of control ribosomes. When incubated with either reticulocyte ribosomes or ribosomal RNA, the factor products specific cuts in the 28-S ribosomal RNA compenent without damaging the 18-S RNA. Incubations of pancreatic or T1 RNase, with ribosomal RNA, at similar protein-synthesis inhibitory concentrations effected a complete breakdown to oligo and mononucleotides. When challenged with isolated 28-S or 18-S reticulocyte ribosomal RNA, the highly purified factor only attacked the 28-S RNA species. There was no accumulation of nucleotides or oligonucleotides and we concluded that the membrane factor causes inhibition of protein synthesis by having a specific endonucleolytic cleavage activity.  相似文献   

3.
The 3'-terminal structures of ribosomal 28S RNA and its precursors from rat and mouse were analyzed by means of periodate oxidation followed by reduction with 3H-borohydride. 3'-terminal labeled nucleoside derivatives produced by RNase T2 digestion were determined by thin-layer chromatography and oligonucleotides generated by RNase T1 digestion were analyzed by DEAE-Sephadex chromatography. In the rat, the major 3'-terminal sequences of ribosomal 28S RNA, nucleolar 28S, 32S, 41S, and 45S RNAs were YGUoh, GZ2Uoh, GZ12Uoh, GZ2Uoh, and GZ7Goh, respectively, whereas in the mouse corresponding sequences were YGUoh, GZ1,2, or 3Uoh, Goh, Uoh and GZ 13Uoh, respectively. (Y: pyrimidine nucleoside, Z: any nucleoside other than guanosine) These results suggest that a "transcribed spacer" sequence is present at the 3'-terminus of the 45S pre-ribosomal RNA, which is gradually removed during the steps of processing.  相似文献   

4.
The 18 S ribosomal RNA from a variety of vertebrate species contains some 40 to 47 methyl groups. The majority of these are 2'-O-ribose substituents; the remaining few are on bases. Several lines of evidence have permitted the identification of the precise locations of the methyl groups in the primary structure of 18 S ribosomal RNA of Xenopus laevis and man. Digestion of RNA with T1 ribonuclease, followed by analysis of the methylated oligonucleotides yielded data on sequences immediately surrounding the methyl groups. Preparative hybridization of X. laevis 18 S ribosomal RNA restriction fragments of ribosomal DNA, followed by fingerprinting analysis on RNA recovered from the hybrids, allowed each methylated oligonucleotide to be mapped to a specific region within 18 S ribosomal RNA. The data on RNA oligonucleotides were correlated with Xenopus ribosomal DNA sequence data in the regions defined by the mapping experiments to identify the precise locations of most of the methyl groups in the X. laevis 18 S RNA sequence. The remaining uncertainties in Xenopus were solved with the aid of data from ribonuclease A fingerprints and, in a few instances, relevant oligonucleotide or sequence data from other laboratories. The locations of most of the methyl groups in human 18 S ribosomal RNA were deduced from the high degree of correspondence between methylated oligonucleotides from human and X. laevis 18 S RNA, together with knowledge of the human 18 S ribosomal DNA sequence. The remaining methylation sites in human 18 S RNA were located with assistance from relevant published comparative data. In the aligned sequences, human and other mammalian 18 S RNA are methylated at all the same positions as in X. laevis, and there are seven additional 2'-O-methylation sites in mammalian 18 S RNA. Further features of the methyl group distribution are briefly reviewed.  相似文献   

5.
Secondary structure mapping in the electron microscope was applied to ribosomal RNA and precusor ribosomal RNA molecules isolated from nucleoli and the cytoplasm of mouse L-cells. Highly reproducible loop patterns were observed in these molecules. The polarity of L-cell rRNA was determined by partial digestion with 3′-exonuclease. The 28 S region is located at the 5′-end of the 45 S rRNA precursor. Together with earlier experiments on labeling kinetics, these observations established a processing pathway for L-cell rRNA. The 45 S rRNA precursor is cleaved at the 3′-end of the 18 S RNA sequence to produce a 41 S molecule and a spacer-containing fragment (24 S RNA). The 41 S rRNA is cleaved forming mature 18 S rRNA and a 36 S molecule. The 36 S molecule is processed through a 32 S intermediate to the mature 28 S rRNA. This pathway is similar to that found in HeLa cells, except that in L-cells a 36 S molecule occurs in the major pathway and no 20 S precusor to 18 S RNA is found. The processing pathway and its intermediates in L-cells are analogous to those in Xenopus laevis, except for a considerable size difference in all rRNAs except 18 S rRNA.The arrangement of gene and transcribed spacer regions and of secondary structure loops, as well as the shape of the major loops were compared in L-cells, HeLa cell and Xenopus rRNA. The over-all arrangement of regions and loop patterns is very similar in the RNA from these three organisms. The shapes of loops in mature 28 S RNA are also highly conserved in evolution, but the shapes of loops in the transcribed spacer regions vary greatly. These observations suggest that the sequence complementarity that gives rise to this highly conserved secondary structure pattern may have some functional importance.  相似文献   

6.
The 5' and 3'-terminal oligonucleotides of 18-S ribosomal RNA of L 5178 Y (a mouse cell line) obtained after total T1 ribonuclease hydrolysis were isolated by a diagonal procedure. They were localized on the fingerprint of T1-ribonuclease-hydrolysed 18-S RNA. These two oligonucleotides were partially hydrolysed by snake venom and spleen phsophodiesterases and resulting products were fractionated bidimensionally. Their base compositions were determined by total hydrolysis with piperidine or snake venom phosphodiesterase. From these results the following sequences were deduced: pU-A-C-C-U-G for the 5'-terminal oligonucleotide and G-A-U-C-A-U-U-Aoh for the 3'-terminal oligonucleotide. Quantitative studies indicated that these sequences represent at least 70% for the 5' oligonucleotide and 85% for the 3' oligonucleotide of the terminal sequences of the 18-S RNA.  相似文献   

7.
Nucleotide sequence study of mouse 5.8S ribosomal RNA.   总被引:4,自引:0,他引:4  
A Hampe  M E Eladari  F Galibert 《Biochimie》1976,58(8):943-951
The primary structure of 5.8S mouse ribosomal RNA has been studied and compared to the structures previously established for other animal species. The results obtained show that mouse 5.8S ribosomal RNA yields pancreatic oligonucleotides with the same nucleotide sequence as the homologous oligonucleotides from rat cells. Furthermore T1 oligonucleotides of 5.8S ribosomal RNA from rat, mouse and human cells behave identically on fingerprinting fractionation and have the same composition as judged by pancreatic digestion. These results strongly suggest that the primary structures of 5.8S ribosomal RNA from rat, mouse and human cells are identical. This identity of structure is also found when the presence of several modified bases (psi and methylated bases) is considered. The findings emphasize the remarkable evolutionary stability of ribosomal gene structure. Comparison of the terminal regional of 5.8S RNA with those of 18S RNA reveals differences which imply a more complex mechanism underlying the maturation of 45S precursor RNA than the finding of identical structure would have suggested.  相似文献   

8.
The methylated nucleotide sequences in HeLa cell ribosomal RNA and its nucleolar precursors were examined by RNA fingerprinting and sequencing methods. 18 S RNA was found to contain approximately 46 methyl groups, 28 S RNA some 70 methyl groups and 5.8 S RNA one methyl group. Most methyl groups occur in different T1 ribonuclease oligonucleotides, and most of these were recovered approximately once per molecule of 18 S or 28 S RNA. There are also, however, several multiply methylated oligonucleotides, a few short products that occur more than once and a few “fractional” products. The great majority of methylations occur at the level of 45 S RNA, but six further methylations occur late during the maturation of 18 S RNA, and one fractional one occurs during 28 S maturation. The transcribed spacer regions of the precursor molecules are unmethylated. Chemical analysis of the methylated components and sequences indicates that all except five “early” methylations are on ribose groups, the remaining five being on bases within the 28 S sequence. The late methylations are all on bases, four of those on 18 S RNA giving rise to the sequence, … Gpm2post6Apm2post6ApCp… The product, pCmpUp, previously reported by Choi &; Busch (1970) as being the 5′ end-group of rat hepatoma 28 S, 32 S and 45 S RNA, is not present in HeLa cell 28 S RNA or its precursors. Implications of this work are discussed.  相似文献   

9.
10.
HeLa cell ribosomal precursor (45S) RNA has been found to contain nucleotide sequences also found in 18S RNA and others found in 28S RNA. Thus, 18S RNA and 28S RNA are readily distinguishable, whereas 45S RNA is similar to 18S and 28S RNA combined. The nucleotide sequences analysed were those resistant to the combined action of pancreatic and T1 ribonucleases.  相似文献   

11.
The topography and the length of the non-ribosomal sequences present in 7-S RNA, the immediate precursor of 5.8-S ribosomal RNA, from the yeast Saccharomyces carlsbergensis were determined by analyzing the nucleotide sequences of the products obtained after complete digestion of 7-S RNA with RNase T1. The results show that 7-S RNA contains approximately 150 non-ribosomal nucleotides. The majority (90%) of the 7-S RNA molecules was found to have the same 5'-terminal pentadecanucleotide sequence as mature 5.8-S rRNA. The remaining 10% exhibited 5'-terminal sequences identical to those of 5.9-S RNA, which has the same primary structure as 5.8-S rRNA except for a slight extension at the 5' end [Rubin, G.M. (1974) Eur. J. Biochem. 41, 197--202]. These data show that the non-ribosomal nucleotides present in 7-S RNA are all located 3'-distal to the mature 5.8-S rRNA sequence. Moreover, it can be concluded that 5.9-S RNA is a stable rRNA rather than a precursor of 5.8-S rRNA. The 3'-terminal sequence of 5.8-S rRNA (U-C-A-U-U-UOH) is recovered in a much longer oligonucleotide in the T1 RNase digest of 7-S RNA having the sequence U-C-A-U-U-U-(C-C-U-U-C-U-C)-A-A-A-C-A-(U-U-C-U)-Gp. The sequences enclosed in brackets are likely to be correct but could not be established with absolute certainty. The arrow indicates the bond cleaved during processing. The octanucleotide sequence -A-A-A-C-A-U-U-C- located near the cleavage site shows a remarkable similarity to the 5'-terminal octanucleotide sequence of 7-S RNA (-A-A-A-C-U-U-U-C-). We suggest that these sequences may be involved in determining the specificity of the cleavages resulting in the formation of the two termini of 5.8-S rRNA.  相似文献   

12.
13.
14.
Amplification in the leader sequence of late polyoma virus mRNAs.   总被引:30,自引:0,他引:30  
S Legon  A J Flavell  A Cowie  R Kamen 《Cell》1979,16(2):373-388
  相似文献   

15.
The processing of ribosomal RNA has been studied in a temperature sensitive mutant of the Syrian hamster cell line BHK 21. At 39 degrees C, these cells are unable to synthesize 28S RNA, and 60S ribosomal subunits, while 18S RNA, and 40S subunits are produced at both temperatures. At 39 degrees C the 45S RNA precursor is transcribed and processed as in wild type cells. The processing of the RNA precursors becomes defective after the cleavage of the 41S RNA, and the separation of the 18S and 28S RNAs sequences in two different RNA molecules. The 36S RNA precursor, which is always present in very small quantity in the nucleoli of wild type cells and of the mutant at 33 degrees C, is found in very large amounts in the mutant at 39 degrees C. The 36S RNA can be, however, slowly processed to 32S RNA. The 32S RNA cannot be processed at 39 degrees C, and it is degraded soon after its formation. Only a small proportion accumulates in the nucleoli. The 32S RNA synthesized at 39 degrees C cannot be processed to 28S RNA upon shift to the permissive temperature, even when the processing of the newly synthesized rRNA has returned to normal. The data suggest that the 36S and 32S RNAs are contained in aberrant ribonucleoprotein particles, leading to a defective processing of the particles as a whole.  相似文献   

16.
E Metspalu  M Ustav  R Villems 《FEBS letters》1983,153(1):125-127
The immobilized tRNA-50 S ribosomal subunit protein (TP50) complex binds the smaller ribosomal subunit. We constructed tRNA . TP50 . 5 S [32P] RNA and tRNA . TP50 . t [32P] RNA complexes and investigated the accessibility of the 32P-labelled tRNAs to ribonuclease T1. It was found that in this complex both 5 S RNA and tRNA are attacked by T1 RNase. In sharp contrast, the addition of 30 S subunit protects 5 S RNA as well as tRNA from degradation. We suggest that 5 S RNA-TP50 complex is exposed to the ribosomal interface and is involved in subunit interaction.  相似文献   

17.
M E Eladari  A Hampe  F Galibert 《Biochimie》1979,61(9):1073-1080
The primary structure of 17S and 25S ribosomal RNAs from Saccharomyces cerevisiae has been analysed by two-dimensional fractionation of T1 oligonucleotides. This method consists of an electrophoresis at pH 3.5 followed by a homochromatography on DEAE-cellulose plates. After the second dimension, the large T1 oligonucleotides were hydrolyzed by pancreatic RNAse, followed by alkaline hydrolysis of the pancreatic products. By fractionating a mixture of tritiated HeLa cell ribosomal RNAs and 32 P yeast cell ribosomal RNAs, two autoradiographs were obtained; one corresponding to the 32P labelled material and the other to the tritiated labelled material. By superposition of the two autoradiographs, the mobility of the various T1 oligonucleotides can be accurately compared and it is shown that yeast 17S rRNA and human 18S rRNA have in common 5 large oligonucleotides and that yeast 25S rRNA and human 28S rRNA have 4 identical oligonucleotides.  相似文献   

18.
In Drosophila melanogaster there is one nucleolar organizer (NO) on each X and Y chromosome. Experiments were carried out to compare the ribosomal RNAs derived from the two nucleolar organizers. 32PO4-labelled ribosomal RNA was isolated from two strains of D. melanogaster, one containing only the X chromosome NO, the other containing only the Y chromosome NO. 28 S and 18 S RNA from the two strains were subjected to a variety of “fingerprinting” and sequencing procedures. Fingerprints of 28 S RNA were very different from those of 18 S RNA. Fingerprints of “X” and “Y” 28 S RNA were indistinguishable from each other, as also were fingerprints of “X” and “Y” 18 S RNA. In combined “T1 plus pancreatic” RNAase fingerprints several distinctive products were characterized and quantitated. Identical products were obtained from X and Y RNA, and the molar yields of the products were indistinguishable. Together these findings imply that the rRNA sequences encoded by the X and Y NOs are closely similar and probably identical to each other.Two further findings were of interest in “T1 plus pancreatic” RNAase fingerprints: (1) in 28 S (as well as in 18 S) fingerprints several distinctive products were recovered in approximately unimolar yields. This indicates that 28 S RNA does not consist of two identical half molecules, though it does consist of two non-identical half molecules together with a “5.8 S” fragment. (2) Several methylated components in Drosophila rRNA also occur in rRNA from HeLa cells and yeast. This suggests that certain features of rRNA structure involving methylated nucleotides may be highly conserved in eukaryotic evolution.  相似文献   

19.
The nucleotide sequence of a particular T1 oligonucleotide found in 41S and 28S RNAs of several cellular cell lines (human, mouse, rat and chicken fibroblast) but absent in 45S ribosomal RNA has been deduced. Its primary structure : A-U-U*-G*-psi-U-C-A-C-C-C-A-C-U-A-A-U-A-Gp shows the presence of a modified G residue which explains the existence of this oligonucleotide in the T1 fingerprint of 41S RNA and 28S. Its absence on the 45S RNA T1 fingerprint is accounted for by a late modification.  相似文献   

20.
The primary structures of ribosomal RNAs transcribed from the nucleolus organizers on X and Y chromosomes of Drosophila melanogaster were compared by RNase T1 fingerprints made with two different systems; i.e. homochromatography on DEAE-cellulose, and polyethyleneimine-cellulose thin-layer chromatography.Ribosomal RNA derived from the X-linked nucleolus organizer was obtained from a strain producing only female larvae and ribosomal RNA derived from the Y-linked nucleolus organizer was isolated from a mutant lacking the X-linked nucleolus organizer.No difference was detected between the fingerprints of 28 S RNA from these animals.In 18 S RNA, however, one oligonucleotide showed a remarkable difference in mobility. The structure of the X-linked organizer-specific oligonucleotide was 5′ U-C-U-U-U-U-U-U-C-C-U-A-U-G 3′, and that of the Y-linked organizer-specific oligonucleotide was 5′ U-C-U-C-U-U-U-U-C-C-U-A-U-G 3′, indicating one base substitution (U á3 C) between them.The absence of 5′-temninal phosphate in this oligonucleotide and available sequence data also suggest that these oligonucleotides did not come from either the 5′ or 3′ terminus of 18 S RNA.D. simulans, whose Y chromosome has no nucleolus organizer (Ritossa &; Atwood, 1966), showed an 18 S RNA fingerprint having only the X-linked organizer-specific oligonucleotide.We conclude from these results that in Drosophila the ribosomal RNA gene sequences are different for the two nucleolus organizers located on the X and Y chromosomes. The implications of those findings concerning the parallel evolution of these genes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号