首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used Hoxd10 expression as a primary marker of the lumbosacral region to examine the early programming of regional characteristics within the posterior spinal cord of the chick embryo. Hoxd10 is uniquely expressed at a high level in the lumbosacral cord, from the earliest stages of motor column formation through stages of motoneuron axon outgrowth. To define the time period when this gene pattern is determined, we assessed Hoxd10 expression after transposition of lumbosacral and thoracic segments at early neural tube stages. We present evidence that there is an early prepattern for Hoxd10 expression in the lumbosacral neural tube; a prepattern that is established at or before stages of neural tube closure. Cells within more posterior lumbosacral segments have a greater ability to develop high level Hoxd10 expression than the most anterior lumbosacral segments or thoracic segments. During subsequent neural tube stages, this prepattern is amplified and stabilized by environmental signals such that all lumbosacral segments acquire the ability to develop high levels of Hoxd10, independent of their axial environment. Results from experiments in which posterior neural segments and/or paraxial mesoderm segments were placed at different axial levels suggest that signals setting Hoxd10 expression form a decreasing posterior-to-anterior gradient. Our experiments do not, however, implicate adjacent paraxial mesoderm as the only source of graded signals. We suggest, instead, that signals from more posterior embryonic regions influence Hoxd10 expression after the early establishment of a regional prepattern. Concurrent analyses of patterns of LIM proteins and motor column organization after experimental surgeries suggest that the programming of these characteristics follows similar rules.  相似文献   

2.
J P Liu  E Laufer  T M Jessell 《Neuron》2001,32(6):997-1012
Subclasses of motor neurons are generated at different positions along the rostrocaudal axis of the spinal cord. One feature of the rostrocaudal organization of spinal motor neurons is a position-dependent expression of Hox genes, but little is known about how this aspect of motor neuron subtype identity is assigned. We have used the expression profile of Hox-c proteins to define the source and identity of patterning signals that impose motor neuron positional identity along the rostrocaudal axis of the spinal cord. We provide evidence that the convergent activities of FGFs, Gdf11, and retinoid signals originating from Hensen's node and paraxial mesoderm establish and refine the Hox-c positional identity of motor neurons in the developing spinal cord.  相似文献   

3.
4.
Protease nexin 1 (Pn-1) or glia derived nexin is a secreted protease inhibitor. By screening a chick embryonic cDNA library, we isolated Pn-1 cDNA and analyzed its expression pattern during development by in situ hybridization. Pn-1 was first observed at HH-stage 3 in the primitive pit. At HH-stage 7, expression was observed in the medial part of the neural folds and asymmetrically in the right lateral plate mesoderm and at the left side of Hensen's node. At HH-stage 10-11, Pn-1 was expressed in the closing neural tube, lateral plate mesoderm and paraxial head mesoderm. From HH-stage 12 onwards, expression was observed caudally in the lateral plate mesoderm and cranially in the Wolffian duct. At the level of the compartmentalized somite, expression was seen in the sclerotome. Pn-1 was also expressed in the anterior wall of the pharynx and still in the paraxial head mesoderm. At HH-stage 15, the expression in the Wolffian duct remained caudally while the expression in the sclerotome extended along the whole body axis. A stronger expression was observed in the cranial four somites. From HH-stage 17-18 onwards, expression became visible in the mesenchyme of the developing limb buds. At these stages, expression was no longer observed in the Wolffian duct. At HH-stage 36, Pn-1 was expressed in the vertebral bodies, in the neural tube, and in the metanephros.  相似文献   

5.
Epiblast cells adjacent to the regressing primitive streak behave as a stem zone that progressively generates the entire spinal cord and also contributes to paraxial mesoderm. Despite this fundamental task, this cell population is poorly characterised, and the tissue interactions and signalling pathways that specify this unique region are unknown. Fibroblast growth factor (FGF) is implicated but it is unclear whether it is sufficient and/or directly required for stem zone specification. It is also not understood how establishment of the stem zone relates to the acquisition of spinal cord identity as indicated by expression of caudal Hox genes. Here, we show that many cells in the chick stem zone express both early neural and mesodermal genes; however, stem zone-specific gene expression can be induced by signals from underlying paraxial mesoderm without concomitant induction of an ambivalent neural/mesodermal cell state. The stem zone is a site of FGF/MAPK signalling and we show that although FGF alone does not mimic paraxial mesoderm signals, it is directly required in epiblast cells for stem zone specification and maintenance. We further demonstrate that caudal Hox gene expression in the stem zone also depends on FGF and that neither stem zone specification nor caudal Hox gene onset requires retinoid signalling. These findings thus support a two step model for spinal cord generation - FGF-dependent establishment of the stem zone in which progressively more caudal Hox genes are expressed, followed by the retinoid-dependent assignment of spinal cord identity.  相似文献   

6.
The paraxial mesoderm of the neck and trunk of mouse embryos undergoes extensive morphogenesis in forming somites. Paraxial mesoderm is divided into segments, it elongates along its anterior posterior axis, and its cells organize into epithelia. Experiments were performed to determine if these processes are autonomous to the mesoderm that gives rise to the somites. Presomitic mesoderm at the tailbud stage was cultured in the presence and absence of its adjacent tissues. Somite segmentation occurred in the absence of neural tube, notochord, gut and surface ectoderm, and occurred in posterior fragments in the absence of anterior presomitic mesoderm. Mesodermal expression of Dll1 and Notch1, genes with roles in segmentation, was largely independent of other tissues, consistent with autonomous segmentation. However, surface ectoderm was found to be necessary for elongation of the mesoderm along the anterior-posterior axis and for somite epithelialization. To determine if there is specificity in the interaction between ectoderm and mesoderm, ectoderm from different sources was recombined with presomitic mesoderm. Surface ectoderm from only certain parts of the embryo supported somite epithelialization and elongation. Somite epithelialization induced by ectoderm was correlated with expression of the basic-helix-loop-helix gene Paraxis in the mesoderm. This is consistent with the genetically defined requirement for Paraxis in somite epithelialization. However, trunk ectoderm was able to induce somite epithelialization in the absence of strong Paraxis expression. We conclude that somitogenesis consists of autonomous segmentation patterned by Notch signaling and nonautonomous induction of elongation and epithelialization by surface ectoderm.  相似文献   

7.
During normal vertebrate development, Hoxd10 and Hoxd11 are expressed by differentiating motoneurons in restricted patterns along the rostrocaudal axis of the lumbosacral (LS) spinal cord. To assess the roles of these genes in the attainment of motoneuron subtypes characteristic of LS subdomains, we examined subtype complement after overexpression of Hoxd10 or Hoxd11 in the embryonic chick LS cord and in a Hoxd10 loss-of-function mouse embryo. Data presented here provide evidence that Hoxd10 defines the position of the lateral motor column (LMC) as a whole and, in rostral LS segments, specifically promotes the development of motoneurons of the lateral subdivision of the lateral motor column (LMCl). In contrast, Hoxd11 appears to impart a caudal and medial LMC (LMCm) identity to some motoneurons and molecular profiles suggestive of a suppression of LMC development in others. We also provide evidence that Hoxd11 suppresses the expression of Hoxd10 and the retinoic acid synthetic enzyme, retinaldehyde dehydrogenase 2 (RALDH2). In a normal chick embryo, Hoxd10 and RALDH2 are expressed throughout the LS region at early stages of motoneuron differentiation but their levels decline in Hoxd11-expressing caudal LS segments that ultimately contain few LMCl motoneurons. We hypothesize that one of the roles played by Hoxd11 is to modulate Hoxd10 and local retinoic acid levels and thus, perhaps define the caudal boundaries of the LMC and its subtype complement.  相似文献   

8.
We provide the first analysis of how a segmentally reiterated pattern of neurons is specified along the anteroposterior axis of the vertebrate spinal cord by investigating how zebrafish primary motoneurons are patterned. Two identified primary motoneuron subtypes, MiP and CaP, occupy distinct locations within the ventral neural tube relative to overlying somites, express different genes and innervate different muscle territories. In all vertebrates examined so far, paraxial mesoderm-derived signals specify distinct motoneuron subpopulations in specific anteroposterior regions of the spinal cord. We show that signals from paraxial mesoderm also control the much finer-grained segmental patterning of zebrafish primary motoneurons. We examined primary motoneuron specification in several zebrafish mutants that have distinct effects on paraxial mesoderm development. Our findings suggest that in the absence of signals from paraxial mesoderm, primary motoneurons have a hybrid identity with respect to gene expression, and that under these conditions the CaP axon trajectory may be dominant.  相似文献   

9.
10.
A secreted signaling factor, Sonic hedgehog (Shh), has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. At caudal levels of the neuraxis, Shh is secreted by the notochord and floor plate during the period that ventral cell fates are specified. At anterior prosencephalic levels that give rise to the telencephalon, however, neither the prechordal mesoderm nor the ventral neural tube expresses Shh at the time that the overt ventral character of the telencephalon becomes evident. Thus, the precise role and timing of Shh signaling relevant to the specification of ventral telencephalic identity remains unclear. By analysing neural cell differentiation in chick neural plate explants we provide evidence that neural cells acquire molecular properties characteristic of the ventral telencephalon in response to Shh signals derived from the anterior primitive streak/Hensen's node region at gastrula stages. Exposure of prospective anterior prosencephalic cells to Shh at this early stage is sufficient to initiate a temporal program of differentiation that parallels that of neurons generated normally in the medial ganglionic eminence subdivision of the ventral telencephalon.  相似文献   

11.
12.
The vertebrate body plan arises during gastrulation, when morphogenetic movements form the ectoderm, mesoderm, and endoderm. In zebrafish, mesoderm and endoderm derive from the marginal region of the late blastula, and cells located nearer the animal pole form the ectoderm [1]. Analysis in mouse, Xenopus, and zebrafish has demonstrated that Nodal-related proteins, a subclass of the TGF-beta superfamily, are essential for mesendoderm development [2], but previous mutational studies have not established whether Nodal-related signals control fate specification, morphogenetic movements, or survival of mesendodermal precursors. Here, we report that Nodal-related signals are required to allocate marginal cells to mesendodermal fates in the zebrafish embryo. In double mutants for the zebrafish nodal-related genes squint (sqt) and cyclops (cyc) [3] [4] [5], dorsal marginal cells adopt neural fates, whereas in wild-type embryos, cells at this position form endoderm and axial mesoderm. Involution movements characteristic of developing mesendoderm are also blocked in the absence of Nodal signaling. Because it has been proposed [6] that inhibition of Nodal-related signals promotes the development of anterior neural fates, we also examined anteroposterior organization of the neural tube in sqt;cyc mutants. Anterior trunk spinal cord is absent in sqt;cyc mutants, despite the presence of more anterior and posterior neural fates. These results demonstrate that nodal-related genes are required for the allocation of dorsal marginal cells to mesendodermal fates and for anteroposterior patterning of the neural tube.  相似文献   

13.
14.
Studies in amphibian embryos have suggested that retinoic acid (RA) may function as a signal that stimulates posterior differentiation of the nervous system as postulated by the activation-transformation model for anteroposterior patterning of the nervous system. We have tested this hypothesis in retinaldehyde dehydrogenase-2 (Raldh2) null mutant mice lacking RA synthesis in the somitic mesoderm. Raldh2−/− embryos exhibited neural induction (activation) as evidenced by expression of Sox1 and Sox2 along the neural plate, but differentiation of spinal cord neuroectodermal progenitor cells (posterior transformation) did not occur as demonstrated by a loss of Pax6 and Olig2 expression along the posterior neural plate. Spinal cord differentiation in Raldh2−/− embryos was rescued by maternal RA administration, and during the rescue RA was found to act directly in the neuroectoderm but not the somitic mesoderm. RA generated by Raldh2 in the somitic mesoderm was found to normally travel as a signal throughout the mesoderm and neuroectoderm of the trunk and into tailbud neuroectoderm, but not into tailbud mesoderm. Raldh2−/− embryos also exhibited increased Fgf8 expression in the tailbud, and decreased cell proliferation in tailbud neuroectoderm. Our findings demonstrate that RA synthesized in the somitic mesoderm is necessary for posterior neural transformation in the mouse and that Raldh2 provides the only source of RA for posterior development. An important concept to emerge from our studies is that the somitic mesodermal RA signal acts in the neuroectoderm but not mesoderm to generate a spinal cord fate.  相似文献   

15.
Hoxa10 and Hoxd10 coordinately regulate lumbar motor neuron patterning   总被引:1,自引:0,他引:1  
The paralogous Hox genes Hoxa10 and Hoxd10 are expressed in overlapping domains in the developing lumbar spinal cord and surrounding mesoderm. Independent inactivation of these two genes alters the trajectory of spinal nerves and decreases the complement of motor neurons present in the lumbar spinal cord, whereas dual inactivation of these two genes has been shown to alter peripheral nerve growth and development in the mouse hindlimb. We have examined the organization and distribution of lumbar motor neurons in the spinal cords of Hoxa10/Hoxd10 double mutant animals. Double mutant animals have decreased numbers of lumbar motor neurons in both the medial and lateral motor columns. The anteroposterior position of the lumbar motor column is shifted caudally in double mutant animals, and the distribution of motor neurons is altered across individual spinal segments. Distinctions between classes of motor neurons based on positional specificity appear disrupted in double mutants. Double mutants also demonstrate abnormal spinal cord vasculature and altered kidney placement and size. Our observations suggest that Hoxa10 and Hoxd10 activity is required to specify the position of the lumbar motor column and to provide segmental specification and identity for the lumbar motor neurons.  相似文献   

16.
Hensen's node is the gastrulation center in the avian embryo. It is the homologue of the amphibian dorsal blastopore lip and the zebrafish shield. It contains the progeny of all midline cells (floor plate of the neural tube, notochord and dorsal endoderm). However, microsurgical experiments on Hensen's node allow to think that organizer function is due to an extremely limited region situated in the caudal part of Hensen's node which corresponds to the boundary between prospective axial mesoderm rostrally and paraxial mesoderm caudally. This interface is essential for Hensen's node regression and organization of the caudal part of the body.  相似文献   

17.
18.
The Xenopus laevis homeobox gene Xhox3 is expressed in the axial mesoderm of gastrula and neurula stage embryos. By the late neurula-early tailbud stage, mesodermal expression is no longer detectable and expression appears in the growing tailbud and in neural tissue. In situ hybridization analysis of the expression of Xhox3 in neural tissue shows that it is restricted within the neural tube and the cranial neural crest during the tailbud-early tadpole stages. In late tadpole stages, Xhox3 is only expressed in the mid/hindbrain area and can therefore be considered a marker of anterior neural development. To investigate the mechanism responsible for the anterior-posterior (A-P) regionalization of the neural tissue, the expression of Xhox3 has been analysed in total exogastrula. In situ hybridization analyses of exogastrulated embryos show that Xhox3 is expressed in the apical ectoderm of total exogastrulae, a region that develops in the absence of anterior axial mesoderm. The results provide further support for the existence of a neuralizing signal, which originates from the organizer region and spreads through the ectoderm. Moreover, the data suggest that this neural signal also has a role in A-P patterning the neural ectoderm.  相似文献   

19.
Hensen's node, also called the chordoneural hinge in the tail bud, is a group of cells that constitutes the organizer of the avian embryo and that expresses the gene HNF-3(&bgr;). During gastrulation and neurulation, it undergoes a rostral-to-caudal movement as the embryo elongates. Labeling of Hensen's node by the quail-chick chimera system has shown that, while moving caudally, Hensen's node leaves in its wake not only the notochord but also the floor plate and a longitudinal strand of dorsal endodermal cells. In this work, we demonstrate that the node can be divided into functionally distinct subregions. Caudalward migration of the node depends on the presence of the most posterior region, which is closely apposed to the anterior portion of the primitive streak as defined by expression of the T-box gene Ch-Tbx6L. We call this region the axial-paraxial hinge because it corresponds to the junction of the presumptive midline axial structures (notochord and floor plate) and the paraxial mesoderm. We propose that the axial-paraxial hinge is the equivalent of the neuroenteric canal of other vertebrates such as Xenopus. Blocking the caudal movement of Hensen's node at the 5- to 6-somite stage by removing the axial-paraxial hinge deprives the embryo of midline structures caudal to the brachial level, but does not prevent formation of the neural tube and mesoderm located posteriorly. However, the whole embryonic region generated posterior to the level of Hensen's node arrest undergoes widespread apoptosis within the next 24 hours. Hensen's node-derived structures (notochord and floor plate) thus appear to produce maintenance factor(s) that ensures the survival and further development of adjacent tissues.  相似文献   

20.
Here, we review a recently discovered developmental mechanism. Anterior–posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early non-organiser mesoderm and the Spemann organiser. The timer is characterised by temporally colinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the non-organiser mesoderm) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilised by signals from the Spemann organiser. The non-organiser mesoderm (NOM) and the Spemann organiser undergo timed interactions during gastrulation which lead to the formation of an anterior–posterior axis and stable Hox gene expression. When separated from each other, neither non-organiser mesoderm nor the Spemann organiser is able to induce anterior–posterior pattern formation of the trunk. We present a model describing that NOM acquires transiently stable hox codes and spatial colinearity after involution into the gastrula and that convergence and extension then continually bring new cells from the NOM within the range of organiser signals that cause transfer of the mesodermal pattern to a stable pattern in neurectoderm and thereby create patterned axial structures. In doing so, the age of the non-organiser mesoderm, but not the age of the organiser, defines positional values along the anterior–posterior axis. We postulate that the temporal information from the non-organiser mesoderm is linked to mesodermal Hox expression. The role of the organiser was investigated further and this turns out to be only the induction of neural tissue. Apparently, development of a stable axial hox pattern requires neural hox patterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号