首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Most of the thousands of grapevine cultivars (Vitis vinifera L.) can be divided into two groups, red and white, based on the presence or absence of anthocyanin in the berry skin, which has been found from genetic experiments to be controlled by a single locus. A regulatory gene, VvMYBA1, which could activate anthocyanin biosynthesis in a transient assay, was recently shown not to be transcribed in white berries due to the presence of a retrotransposon in the promoter. We have found that the berry colour locus comprises two very similar genes, VvMYBA1 and VvMYBA2, located on a single bacterial artificial chromosome. Either gene can regulate colour in the grape berry. The white berry allele of VvMYBA2 is inactivated by two non-conservative mutations, one leads to an amino acid substitution and the other to a frame shift resulting in a smaller protein. Transient assays showed that either mutation removed the ability of the regulator to switch on anthocyanin biosynthesis. VvMYBA2 sequence analyses, together with marker information, confirmed that 55 white cultivars all contain the white berry allele, but not red berry alleles. These results suggest that all extant white cultivars of grape vines have a common origin. We conclude that rare mutational events occurring in two adjacent genes were essential for the genesis of the white grapes used to produce the white wines and white table grapes we enjoy today.  相似文献   

9.
Azuma A  Yakushiji H  Koshita Y  Kobayashi S 《Planta》2012,236(4):1067-1080
Temperature and light are important environmental factors that affect flavonoid biosynthesis in grape berry skin. However, the interrelationships between temperature and light effects on flavonoid biosynthesis have not been fully elucidated at the molecular level. Here, we investigated the effects of temperature and light conditions on the biosynthesis of flavonoids (anthocyanins and flavonols) and the expression levels of related genes in an in vitro environmental experiment using detached grape berries. Sufficient anthocyanin accumulation in the grape skin was observed under a low temperature (15?°C) plus light treatment, whereas high temperature (35?°C) or dark treatment severely suppressed anthocyanin accumulation. This indicates that the accumulation of anthocyanins is dependent on both low temperature and light. qRT-PCR analysis showed that the responses of three MYB-related genes (VlMYBA1-3, VlMYBA1-2, and VlMYBA2) to temperature and light differed greatly even though the products of all three genes had the ability to regulate anthocyanin biosynthesis pathway genes. Furthermore, the expression levels of other MYB-related genes and many flavonoid biosynthesis pathway genes were regulated independently by temperature and light. We also found that temperature and light conditions affected the anthocyanin composition in the skin through the regulation of flavonoid biosynthesis pathway genes. Our results suggest that low temperature and light have a synergistic effect on the expression of genes in the flavonoid biosynthesis pathway. These findings provide new information about the relationships between environmental factors and flavonoid accumulation in grape berry skin.  相似文献   

10.
11.
12.
Anthocyanins and tannins are two of the most abundant flavonoids found in grapevine, and their synthesis is derived from the phenylpropanoid pathway. As described for model species such as Arabidopsis thaliana, maize and petunia, the end-point branches of this pathway are tightly regulated by the combinatorial interaction of three families of regulatory factors; MYB, bHLH (also known as MYC) and WDR proteins. Among these, only MYB genes have been previously identified in grapes. Here, we report the isolation of the first members from the WDR and bHLH families found in Vitis vinifera, named WDR1, WDR2 and MYCA1. WDR1 contributed positively to the accumulation of anthocyanins when it was overexpressed in A. thaliana, although it was not possible to determine the function of WDR2 by ectopic expression. The sub-cellular localizations of WDR1 and MYCA1 were observed by means of GFP-fusion proteins, indicating both cytoplasm and nuclear localization, in contrast to the localization of a MYB factor exclusively in the nucleus. The expression patterns of these genes were quantified in coloured reproductive organs throughout development, and correlated with anthocyanin accumulation and the expression profiles of the flavonoid-related MYBA1-2, UFGT, and ANR genes. In vitro grapevine plantlets grown under high salt concentrations showed a cultivar-dependent response for anthocyanin accumulation, which correlated with the expression of MYBA1-2, MYCA1 and WDR1 genes. These results suggest that MYCA1 may regulate ANR and UFGT and that this last control is easier to distinguish whenever MYBA genes are absent or in low abundance. Future studies should address the specific interactions of these proteins and their quantitative contribution to flavonoid synthesis in grape berries.  相似文献   

13.
14.
15.
Gibberellic acid (GA3) is a plant growth regulator commonly used for increasing the productivity of seedless fruit. However, little is known about the effect of GA3 on phenolic compounds in grapevine. In the present study, the effect of GA3 application on contents and antioxidant activities of phenolic compounds in different tissues of Muscat grapevine (Vitis vinifera L. cv. Muscat) was investigated. An application of 100 mg/L GA3 could successfully induce seedless grape berry, enhance berry size and accelerate the development of berries, resulting in earlier ripening of seedless berry. The contents of total phenolics and total flavonoids, and antioxidant activities in leaf, stem and tendril obviously increased, while these remarkably decreased in berry skin and flesh after GA3 application. In addition, the grapevine leaf, stem, tendril and skin extracts were shown to contain high amounts of phenolics and significant antioxidant activities. Thus, these findings indicate that GA3 application causes different effect on phenolic compounds and antioxidant activities, depending on grapevine tissues.  相似文献   

16.
17.
Proanthocyanidins (PAs), also called condensed tannins, can protect plants against herbivores and are important quality components of many fruits. Two enzymes, leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR), can produce the flavan-3-ol monomers required for formation of PA polymers. We isolated and functionally characterized genes encoding both enzymes from grapevine (Vitis vinifera L. cv Shiraz). ANR was encoded by a single gene, but we found two highly related genes encoding LAR. We measured PA content and expression of genes encoding ANR, LAR, and leucoanthocyanidin dioxygenase in grape berries during development and in grapevine leaves, which accumulated PA throughout leaf expansion. Grape flowers had high levels of PA, and accumulation continued in skin and seeds from fruit set until the onset of ripening. VvANR was expressed throughout early flower and berry development, with expression increasing after fertilization. It was expressed in berry skin and seeds until the onset of ripening, and in expanding leaves. The genes encoding LAR were expressed in developing fruit, particularly in seeds, but had low expression in leaves. The two LAR genes had different patterns of expression in skin and seeds. During grape ripening, PA levels decreased in both skin and seeds, and expression of genes encoding ANR and LAR were no longer detected. The results indicate that PA accumulation occurs early in grape development and is completed when ripening starts. Both ANR and LAR contribute to PA synthesis in fruit, and the tissue and temporal-specific regulation of the genes encoding ANR and LAR determines PA accumulation and composition during grape berry development.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号