共查询到17条相似文献,搜索用时 96 毫秒
1.
睾丸决定因子基因(Testis-determining factor,TDF)位于Y染色体短臂上,它的表达产物诱导睾丸组织的发生。SRY基因(Sex-determining Region of the Y)位于Y染色体的性别决定区内,许多特征显示SRY就是TDF。我们选用与SRY基因相应的引物,用PCR技术对正常人男女各10例的基因组DNA进行扩增。将特异扩增的男性SRY基因片段重组到质粒PUC12中,得到含有中国人SRY基因片段的克隆,命名为PSY-1、PSY-2。用[~(32)p]标记重组质粒中的SRY基因片段作探针,与PCR结果进行Southern杂交,男性样品均显示特异杂交带,女性样品为阴性。用末端终止法测定克隆的SRY基因片段的全部核苷酸序列为299bp,含有SRY基因中高度保守及功能特异性区域的240bp,我们对此进行了讨论。 相似文献
2.
牛SRY同源基因的PCR扩增和克隆 总被引:1,自引:0,他引:1
本文采用人SRY基因的一对引物,通过PCR扩增获得了雄性牛(Bos taurus)SRY同源基因片段。进一步证实牛存在与人SRY基因同源的相应基因。将PCR产物与载体pUC—Eco—T连接后,用以转化JM109菌,经过与人SRY基因探针菌落杂交,筛选获得了牛SRY同源基因克隆pBosY O.6后者的插入片段为相应于人SRY基因保守区在内的一段约609bp DNA。此外还比较分析了人和牛SRY同源基因片段限制酶图谱。 相似文献
3.
4.
在哺乳动物中,位于Y染色体上的指导雄性性别分化的基因被命名为睾丸决定因子(Testis-determining factor,TDF).1990年6月分离获得的SRY基因(Sex-deter-mining region of the Y)被认为是TDF基因最好的侯选者「1-4」,SRY基因为单拷贝,位于Y染色体短臂末端1A1A区,靠近假常染色体配对区(PAPR)的交界处,其部分顺序编码80个保守性 相似文献
5.
根据荷斯坦牛SRY基因设计一对引物,采用聚合酶链式反应(PCR)技术,以中国沼泽型水牛(Swamp Buffalo)基因组DNA为模板,扩增得到SRY(Sex Deterimation region of Y chromosome)全序列约2005bp,其中1-504bp为5’启动子区,1196-2005bp为3’侧翼序列,在505-1195bp为SRY的外显子,编码229个氨基酸。在SRY HMG box区域设计探针,用地高辛标记后分别与雄性、雌性水牛基因组DNA进行Southern 杂交,结果显示该段序列只在雄性DNA样本中有杂交信号,证明SRY基因为雄性特异。BLAST比对结果显示与牛属动物SRY基因的同源性为96%,其中SRY基因HMG box区域同源性高达99%,说明SRY基因具有高度的进化保守性 相似文献
6.
目的获得版纳微型猪近交系(BMI)SRY基因编码区序列并进行分子系统进化研究。方法以看家基因GAPDH为内参,对BMI猪的SRY基因编码区序列进行PCR扩增、克隆和序列分析,并应用Lasergene、Bi-oEdit、ClustalX、MEGA等生物信息学软件同鲸鱼、海豚、鹿、绵羊、牛、海豹、马、海象、熊猫、人、驴、熊、猫、虎和美洲豹等15个物种相应SRY编码区核苷酸序列和氨基酸序列进行了比对分析,在此基础上采用NJ和ME法对其编码区氨基酸序列构建了分子系统进化树。结果 BMI猪SRY基因编码区序列长711 bp,编码236个氨基酸,GenBank登录号为GU991615。BMI猪与鲸鱼、海豚、鹿、绵羊、牛、海豹、马、海象、熊猫、人、驴、熊、猫、虎和美洲豹的SRY基因编码区核苷酸序列相似性分别为83.7%、82.8%、78.4%、78.0%、76.9%、73.3%、73.1%、73.0%、72.9%、72.7%、72.7%、72.2%、71.6%、71.3%、70.8%,相应的氨基酸序列相似性分别为72.8%、54.5%、67.3%、64.5%、61.5%、61.9%、59.5%、61.4%、62.0%、59.1%、59.0%、62.0%、59.6%、59.6%、59.2%。结论 BMI猪同鲸鱼等15个物种的SRY基因编码区核苷酸和相应氨基酸序列具有较高的保守性。NJ和ME方法聚类构建的分子系统进化树表明,BMI猪与牛、绵羊、鹿聚为一个分支,符合分类学地位,它们分别为偶蹄目下的猪科、牛科和鹿科动物。 相似文献
7.
在哺乳动物中,位于Y染色体上的指导雄性性别分化的基因被命名为睾丸决定因子(Testis-determiningfactor,TDF)1990年6月分离获得的SRY基因(Sex-determiningregionoftheY)被认为是TDF基因最好的候选者[1-4]。SRY基因为单拷贝,位于Y染色体短臂末端1A1A区,靠近假常染色体配对区(PAPR)的交界处,其部分顺序编码80个保守性氨基酸组成的多肽。本实验使用与SRY基因相应的引物,利用PCR技术以一例性反转畸形病人的基因组DNA为模板分离SRY基因保守区顺序,并将特异扩增出的此SRY基因片段重组到质粒pUC12中,得到含有SRY基因片段的克隆。经测序表明其SRY基因保守顺序上有T→C(Ser→Pro)突变。SRY基因的存在及其突变可能是导致性反转畸形发病的原因。 相似文献
8.
牦牛CAPN1基因的克隆与序列分析 总被引:1,自引:0,他引:1
CAPN1是影响肌肉嫩度的数量性状位点 (QTL)的候选基因。根据GenBank发表的普通牛CAPN1基因序列设计特异性引物,以天祝白牦牛cDNA为模板,分段进行PCR扩增,克隆,测序。应用生物软件BioEdit对各测序结果进行序列拼接共获得牦牛CAPN1 cDNA 片段2267bp,其中包含一个2151bp的完整的开放阅读框(ORF),以及3’和5’末端非编码区的部分序列(77bp和166bp) 。分析表明:牦牛CAPN1基因编码区全长2151bp,共编码716个氨基酸。与已报道的牛,猪,人小鼠的序列进行比较,核苷酸同源性分别为99.3%,93.9%,90.0% ,85.5% 。预测氨基酸的同源性分别为99.4%,96.1%,94.6%,89.0%,并且对牦牛CAPN1四个结构域分别进行NCBI BLAST发现四个结构域在以上四个物种中都显示出很好的保守性,最为保守的在结构域Ⅳ(>96%)。牦牛与牛产生的 14个核苷酸突变中,有3个产生了氨基酸突变,均发生在结构域Ⅲ。构建分子系统进化树表明:聚类结果与传统分类学相符。 相似文献
9.
牦牛α-乳清蛋白基因的克隆与序列分析 总被引:13,自引:0,他引:13
根据奶牛α-乳清蛋白基因序列设计引物,用PCR方法扩增并克隆了牦牛(Poephagens grunnieus)α-乳清蛋白基因的全序列。结果表明,在671-2689bp之间,共有4个外显子和3个内含子,牦牛α-乳清蛋白基因共编码142个氨基酸,其中第1-19氨基酸之间的短肽为信号肽序列。牦牛的α-乳清蛋白基因有较高水平的表达可能与基因内非编码序列碱基突变引起的回文结构消失有关。该基因5′侧翼序列在结构上牦牛和牛基本相同,只有MGF因子识别位点稍有差别。且牦牛的该序列更符合Groenen等1994年总结的该因子识别位点的模式序列,因此牦牛的该基因5′调控区可能更适于进行组织特异性表达的转基因动物的制作研究。 相似文献
10.
11.
12.
Zi XD 《Theriogenology》2003,59(5-6):1303-1312
This paper reviews seasonal breeding, puberty, postpartum anestrus, embryonic loss and calf survival and their constraints in female yaks. Methods for improving fertility in postpartum yak cows are also considered. Yaks are seasonal breeders with mating and conception restricted in the warm season. Puberty generally occurs in the 2nd to the 4th warm season following birth, i.e. between 13 and 36 months of age. The cows usually have a long postpartum anestrus period; only a small proportion of the cows return to estrus in the 1st breeding season after calving, most come into estrus in the 2nd and 3rd years. Nutritional status is the most important determinant of reproduction in female yaks. Reproductive success is a direct result of the availability of pasture determined by climate, season, and management practices. Milking delays puberty by reducing milk intake (restricted suckling) and growth rate for the calf. Milking interferes with grazing and prolongs the duration of postpartum acyclicity in cows. Calves born early in the season have a longer suckling season than those born later in the season before the onset of winter. Thus, they can have their first cycle in the breeding season of the following year, while those born late in the season may not have their first estrus until 25 or 26 months of age. Cows calving early in the season are more likely to return to estrus in the year of calving because they have a longer period to recover from the demand on body reserves before the onset of winter.Inbreeding in smallholder yak farms is also discussed and minimizing inbreeding by exchanging bulls among different herds is suggested. Reproductive efficiency can be improved by nutritional supplementation during the winter, however, the most cost-effective and practical strategy for this needs to be determined. Early weaning or restricted suckling may shorten the duration of postpartum acyclicity, however, it is impractical due to reduced growth rates and increased winter mortality of early weaned calves. A single treatment with either GnRH, or PGF(2alpha)+GnRH can successfully induce estrus in yak cows that calved in previous years (with or without calf) but did not calve in the current year, however, it has little effect in cows nursing a calf born in the current year. The effects of administration of exogenous progestogens plus GnRH on the fertility of yak cows are worthy of further study. 相似文献
13.
运用大体解剖学的方法研究了青藏高原牦牛(Bos grlznniens)眼的动脉供应。为了显示从颈总动脉到眼的血液供应情况,在6个牦牛的颈总动脉内灌注乙醚.红色油画颜料(15:1)。结果表明,眼的动脉供应主要来源于眼内动脉、眼外动脉、颞浅动脉和颧动脉。眼内动脉在眼眶内与眼外动脉相吻合,其为睫状长动脉的主要来源;眼外动脉产生的分支供应眼背侧斜肌、泪腺区、上下眼睑和眼外侧角,并且参与了前硬膜外异网和眼异网的形成;眼异网发出许多分支供应眼直肌、眼背侧斜肌、眼球缩肌、上眼睑提肌和脉络膜;颞浅动脉发出分支供应眼外侧角、上下眼睑、泪腺区,而且和眼异网发出的泪腺动脉相互吻合;颧动脉起自眶下动脉,其分支供应上下和第三眼睑、眼腹侧直肌及内侧眼角。在6个标本中,眼的动脉分布左右基本相同。 相似文献
14.
The genetics of brown coat color and white spotting in domestic yaks (Bos grunniens) 总被引:1,自引:0,他引:1
Domestic yaks (Bos grunniens) exhibit two major coat color variations: a brown vs. wild‐type black pigmentation and a white spotting vs. wild‐type solid color pattern. The genetic basis for these variations in color and distribution remains largely unknown and may be complicated by a breeding history involving hybridization between yaks and cattle. Here, we investigated 92 domestic yaks from China using a candidate gene approach. Sequence variations in MC1R, PMEL and TYRP1 were surveyed in brown yaks; TYRP1 was unassociated with the coloration and excluded. Recessive mutations from MC1R, or p.Gln34*, p.Met73Leu and possibly p.Arg142Pro, are reported in bovids for the first time and accounted for approximately 40% of the brown yaks in this study. The remaining 60% of brown individuals correlated with a cattle‐derived deletion mutation from PMEL (p.Leu18del) in a dominant manner. Degrees of white spotting found in yaks vary from color sidedness and white face, to completely white. After examining the candidate gene KIT, we suggest that color‐sided and all‐white yaks are caused by the serial translations of KIT (Cs6 or Cs29) as reported for cattle. The white‐faced phenotype in yaks is associated with the KIT haplotype Swf. All KIT mutations underlying the serial phenotypes of white spotting in yaks are identical to those in cattle, indicating that cattle are the likely source of white spotting in yaks. Our results reveal the complex genetic origins of domestic yak coat color as either native in yaks through evolution and domestication or as introduced from cattle through interspecific hybridization. 相似文献
15.
Polymorphism in mitochondrial DNA (mtDNA) of yak (Bos grunniens) 总被引:3,自引:0,他引:3
Mitochondrial DNAs (mtDNA) from 21 yaks (Bos grunniens) were assayed for restriction fragment length polymorphisms by using 20 restriction endonucleases, six of which (AvaI, AvaII, BglII, EcoRI, HindIII, and HpaI) detected polymorphism. Four different mtDNA haplotypes were identified. Combining this with previous reports about the mtDNA RFLPs of B. indicus and B. taurus, there are obvious differences in mtDNA polymorphism between the yak and other Bos species. We estimated that the divergence times between the ancestor of B. grunniens and the ancestor of B. taurus or B. indicus were about 1.2–2.2 and 1.01–2.02 million years ago, respectively. 相似文献
16.
17.
Molecular Cloning and Expression of Yak (Bos grunniens) Lactoferrin cDNA in Pichia pastoris 总被引:1,自引:0,他引:1
cDNA encoding lactoferrin from yak was isolated by RT-PCR and then sequenced. The cloned cDNA (2127 bp) encodes a 709 amino acid precursor molecule of yak lactoferrin with a signal peptide of 19 amino acids. The yak lactoferrin cDNA was expressed in Pichia pastoris. The recombinant protein, purified by Ni-NTA affinity column, had a molecular weight of 76 kDa and reacted with an antibody raised against native bovine lactoferrin. The iron-binding behavior and antimicrobial activity of the purified protein indicated that it was correctly folded and functional. 相似文献