首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principle of the immobilized metal affinity chromatography (IMAC) is based on the differences in the affinity of proteins for metal ions bound in a 1:1 complex of iminodiacetic acid (IDA) immobilized on a chromatographic support. A single step purification was carried out for luteinizing hormone (LH) on Cu2+, Zn2+, Ni2+, and Co2+ IDA Sepharose affinity columns. Highly purified LH was obtained with a Cu2+ IDA Sepharose column. SDS-PAGE and Western blot analysis were done to confirm the purity of the hormone. Biological activity has been evaluated by radio-immunoassay. This method was found economically viable and suitable for the recovery of biologically active hormone.  相似文献   

2.
The interaction of several serum albumins with chelated (iminodiacetate, IDA) and immobilized (agarose-IDA) metal ions, Co2+, Ni2+, Cu2+ and Zn2+, was studied. There was no retention of human, bovine, porcine, murine and avian albumins on IDA-Zn(II) and IDA-Co(II) columns. However, all albumins studied, i.e., those of: man, cow, pig, dog, rabbit, rat, mouse, chicken and pigeon were retained on IDA-Cu(II) columns, and all except dog albumin were retained also on IDA-Ni(II). The recognition of albumins by chelated and immobilized transition metals seems to be related to an affinity for the imidazole side chains. It is postulated that one to three imidazoles is involved in this interaction, under the employed experimental conditions (pH 7.0; 1 M sodium chloride). There is no evidence for any significant contribution of tryptophan or cysteine (Cys 34) residues to the chromatographic event. The retention of defatted albumin and albumin oligomers (human), on IDA-Cu(II) columns was not significantly different from that of non-defatted albumin or albumin monomer, respectively.  相似文献   

3.
Various immobilized metal ions affinity membranes (IMAMs) were prepared from the regenerated cellulose membrane (RC membrane) and chelated with various metal ions such as Co2+, Ni2+, Cu2+ and Zn2+. The D-hydantoin-hydrolyzing enzyme (DHTase) harboring a poly-His tagged residue was used as a model protein to be immobilized on the prepared IMAMs through the direct metal–protein interaction forces. The adsorption isotherm and the kinetic parameters Vmax, Km,app of DHTase on IMAMs were studied. The cobalt ions chelated IMAM (Co-IMAM) was found to yield the highest specific activity of DHTase. Under the immobilization condition, the cobalt ion chelated amount was 161.4 ± 4.7 μmol/disk with a DHTase activity of 4.1 ± 0.1 U/disk. As compared to the free DHTase, the immobilized DHTase membrane could achieve a broader pH tolerance and higher thermal stability. In addition, 98% of the residual activity could be retained for 7-times repeated use. Only little activity loss was observed within 36-day storage at 4 °C. This is the first report concerning about using cobalt ion as the effective chelated metal ion for simultaneous purification and immobilization operation.  相似文献   

4.
We have utilized iminodiacetate (IDA) gels with immobilized Zn2+, Cu2+ and Ni2+ ions to evaluate the metal binding properties of uterine estrogen receptor proteins. Soluble (cytosol) receptors labeled with [3H]estradiol were analyzed by immobilized metal affinity chromatography (IMAC) before as well as after (1) 3 M urea-induced transformation to the DNA-binding form, and (2) limited trypsin digestion to separate the steroid- and DNA-binding domains. Imidazole (2-200 mM) affinity elution and pH-dependent (pH 7-3.6) elution techniques were both evaluated and found to resolve several receptor isoforms differentially in both the presence and absence of 3 M urea. Individual receptor forms exhibited various affinities for immobilized Zn2+, Cu2+ and Ni2+ ions, but all intact receptor forms were strongly adsorbed to each of the immobilized metals (Ni2+ greater than Cu2+ much greater than Zn2+) at neutral pH. Generally, similar results were obtained with IDA-Cu2+ and IDA-Ni2+ in the absence of urea. Receptors were tightly bound and not eluted before 100 mM imidazole or pH 3.6. Different results were obtained using IDA-Zn2+; at least four receptor isoforms were resolved on IDA-Zn2+. Receptor-metal interaction heterogeneity and affinity for IDA-Zn2+ and IDA-Cu2+, but not IDA-Ni2+, were substantially decreased in the presence of 3 M urea. The receptor isoforms identified and separated by IDA-Zn2+ chromatography were not separable using high-performance size-exclusion chromatography, density gradient centrifugation, chromatofocusing or DNA-affinity chromatography. The affinity of trypsin-generated (mero)receptor forms for each of the immobilized metals was decreased relative to that of intact receptor. High-affinity metal-binding sites were mapped to the DNA-binding domain, but at least one of the metal-binding sites is located on the steroid-binding domain. Recovery of all receptor forms from the immobilized metal ion columns was routinely above 90%. These results demonstrate the differential utility of various immobilized metals to characterize and separate individual receptor isoforms and domain structures. Receptor-metal interactions warrant further investigation to establish their effects on receptor structure/function relationships. In addition to the biological implications, recognition of estrogen receptor proteins as metal-binding proteins suggests new and potentially powerful receptor immobilization and purification regimes previously unexplored by those in this field.  相似文献   

5.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

6.
DNA was immobilized onto a porous glass bead by a treatment with UV irradiation. The immobilized DNA was insoluble in water and used for accumulation of heavy metal ion. When DNA-immobilized glass bead was added into aqueous solution containing heavy metal ions, such as Hg2+, Cd2+, Pb2+, Zn2+, Cu2+ and Fe3+, the concentration of these metal ions in the solution was decreased. However, the concentration of Mg2+ in the solution was not affected by the addition of the DNA-immobilized glass bead. These results suggested that UV-irradiated DNA selectively accumulated heavy metal ions.  相似文献   

7.
The products of the Rhizobium leguminosarum hyp gene cluster are necessary for synthesis of a functional uptake [NiFe] hydrogenase system in symbiosis with pea plants, and at least for HypB and HypF, a role in hydrogenase-specific nickel metabolism has been postulated (L. Rey, J. Murillo, Y. Hernando, E. Hidalgo, E. Cabrera, J. Imperial, and T. Ruiz-Argüeso, Mol. Microbiol. 8:471-481, 1993). The R. leguminosarum hypB gene product has been overexpressed in Escherichia coli and purified by immobilized nickel chelate affinity chromatography in a single step. The purified recombinant HypB protein was able to bind 3.9 +/- 0.1 Ni2+ ions per HypB monomer in solution. Co2+, Cu2+, and Zn2+ ions competed with Ni2+ with increasing efficiency. Monospecific HypB antibodies were raised and used to show that HypB is synthesized in R. leguminosarum microaerobic vegetative cells and pea bacteroids but not in R. leguminosarum aerobic cells. HypB protein synthesized by R. leguminosarum microaerobic vegetative cells could also be isolated by immobilized nickel chelate affinity chromatography. A histidine-rich region at the amino terminus of the protein (23-HGHHHH DGHHDHDHDHDHHRGDHEHDDHHH-54) is proposed to play a role in nickel binding, both in solution and in chelated form.  相似文献   

8.
Di(2‐ethylhexyl) phosphoric acid (HDEHP) was used as a transition metal ion chelator and introduced to the nonionic reverse micellar system composed of equimolar Triton X‐45 and Span 80 at a total concentration of 30 mmol/L. Ni(II) ions were chelated to the HDEHP dimers in the reverse micelles, forming a complex denoted as Ni(II)R2. The Ni(II)‐chelate reverse micelles were characterized for the purification of recombinant hexahistidine‐tagged enhanced green fluorescent protein (EGFP) expressed in Escherichia coli. The affinity binding of EGFP to Ni(II)R2 was proved by investigation of the forward and back extraction behaviors of purified EGFP. Then, EGFP was purified with the affinity reverse micelles. It was found that the impurities in the feedstock impeded EGFP transfer to the reverse micelles, though they were little solubilized in the organic phase. The high specificity of the chelated Ni2+ ions toward the histidine tag led to the production of electrophoretically pure EGFP, which was similar to that purified by immobilized metal affinity chromatography. A two‐stage purification by the metal‐chelate affinity extraction gave rise to 87% recovery of EGFP. Fluorescence spectrum analysis suggests the preservation of native protein structure after the separation process, indicating the system was promising for protein purification. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
High-level expression of recombinant proteins in Escherichia coli frequently leads to the formation of insoluble protein aggregates, termed inclusion bodies. In order to recover a native protein from inclusion bodies, various protein refolding techniques have been developed. Column-based refolding methods and refolding in aqueous two-phase systems are often an attractive alternative to dilution refolding due to simultaneous purification and improved refolding yields. In this work, the effect of surface histidine mutations and their number on the partitioning and refolding of recombinant human granulocyte-colony stimulating factor Cys17Ser variant (rhG-CSF (C17S)) from solubilized inclusion bodies in aqueous two-phase systems polyethylene glycol (PEG)-dextran, containing metal ions, chelated by dye Light Resistant Yellow 2KT (LR Yellow 2KT)-PEG derivative, was investigated. Human G-CSF is a growth factor that regulates the production of mature neutrophilic granulocytes from the precursor cells. Initially, the role of His156 and His170 residues in the interaction of rhG-CSF (C17S) with Cu(II), Ni(II) and Hg(II) ions, chelated by LR Yellow 2KT-PEG, was investigated at pH 7.0 by means of affinity partitioning of purified, correctly folded rhG-CSF (C17S) mutants. It was determined that both His156 and His170 mutations reduced the affinity of rhG-CSF (C17S) for chelated Cu(II) ions at pH 7.0. His170 mutation significantly reduced the affinity of protein for chelated Ni(II) ions. However, histidine mutations had only a small effect on the affinity of protein for Hg(II) ions. The influence of His156 and His170 mutations on the refolding of rhG-CSF (C17S) from solubilized inclusion bodies in aqueous two-phase systems PEG-dextran, containing chelated Ni(II) and Hg(II) ions, was investigated. Reversible interaction of protein mutants with chelated metal ions was used for refolding in aqueous two-phase systems. Both histidine mutations resulted in a significant decrease of protein refolding efficiency in two-phase systems containing chelated Ni(II) ions, while in the presence of chelated Hg(II) ions their effect on protein refolding was negligible. Refolding studies of rhG-CSF variants with different number of histidine mutations revealed that a direct correlation exists between the number of surface histidine residues and refolding efficiency of rhG-CSF variant in two-phase systems containing chelated Ni(II) ions. This method of protein refolding in aqueous two-phase systems containing chelated metal ions should be applicable to other recombinant proteins that contain accessible histidine residues.  相似文献   

10.
Polyvinylimidazole (PVI)-grafted iron oxide nanoparticles (PVIgMNP) were prepared by grafting of telomere of PVI on the iron oxide nanoparticles. Different metal ions (Cu2+, Zn2+, Cr2+, Ni2+) ions were chelated on polyvinylimidazole-grafted iron oxide nanoparticles, and then the metal-chelated magnetic particles were used in the adsorption of invertase. The maximum invertase immobilization capacity of the PVIgMNP–Cu2+ beads was observed to be 142.856 mg/g (invertase/PVIgMNP) at pH 5.0. The values of the maximum reaction rate (V max) and Michaelis–Menten constant (Km) were determined for the free and immobilized enzymes. The enzyme adsorption–desorption studies, pH effect on the adsorption efficiency, affinity of different metal ions, the kinetic parameters and storage stability of free and immobilized enzymes were evaluated.  相似文献   

11.
The chemical modification of solid supports with chelators for the sorption of residual amounts of specific metal ions is of environmental and biological current interest. The present work describes the preparation and chelating properties of a new hydroxypyrimidinone-functionalized silica, (HOPY-PrN)-Si, with high affinity for hard metal ions. The new chelating matrix was obtained by coupling a 1-hydroxy-2-(1H)-pyrimidinone derivative, HOPY-PrN, to an epoxy-activated silica. It showed good stability at neutral and acidic conditions and high sequestering capacity for hard metal ions, namely Fe3+ and Al3+, as previously found for the corresponding sepharosic derivative. However, the fact that the present silica-gel derivative is considerably less expensive gives support to its potential interest as a sorbent of traces of toxic hard metal ions from water streams or even from physiological fluids, aided by extracorporeal devices containing the immobilized chelator.  相似文献   

12.
Liu J  Dutta SJ  Stemmler AJ  Mitra B 《Biochemistry》2006,45(3):763-772
ZntA, a P1B-type ATPase, confers resistance specifically to Pb2+, Zn2+, and Cd2 in Escherichia coli. Inductively coupled plasma mass spectrometry measurements show that ZntA binds two metal ions with high affinity, one in the N-terminal domain and another in the transmembrane domain. Both sites can bind monovalent and divalent metal ions. Two proteins, deltaN-ZntA, in which the N-terminal domain is deleted, and C59A/C62A-ZntA, in which the N-terminal metal-binding site is disabled by site-specific mutagenesis, can only bind one metal ion. Because C59A/C62A-ZntA can bind a metal ion at the transmembrane site, the N-terminal domain does not block direct access of metal ions to it from the cytosol. A third mutant protein, C392A/C394A-ZntA, in which cysteines from the conserved CPC motif in transmembrane helix 6 are altered, binds metal ions only at the N-terminal site, indicating that both these cysteines form part of the transmembrane site. The metal affinity of the transmembrane site was determined in deltaN-ZntA and C59A/C62A-ZntA by competition titration using a metal ion indicator and by tryptophan fluorescence quenching. The binding affinity for the physiological substrates, Zn2+, Pb2+, and Cd2+, as well as for the extremely poor substrates, Cu2+, Ni2+, and Co2+, range from 10(6)-10(10) M(-1), and does not correlate with the metal selectivity shown by ZntA. Selectivity in ZntA possibly results from differences in metal-binding geometry that produce different structural responses. The affinity of the transmembrane site for metal ions is of similar magnitude to that of the N-terminal site [Liu J. et al. (2005) Biochemistry 44, 5159-5167]; thus, metal transfer between them would be facile.  相似文献   

13.
Metal binding by citrus dehydrin with histidine-rich domains   总被引:9,自引:0,他引:9  
Dehydrins are hydrophilic proteins that are responsive to osmotic stress, such as drought, cold, and salinity in plants. Although they have been hypothesized to stabilize macromolecules in stressed cells, their functions are not fully understood. Citrus dehydrin, which accumulates mainly in response to cold stress, enhances cold tolerance in transgenic tobacco by reducing lipid peroxidation. It has been demonstrated that citrus dehydrin scavenges hydroxyl radicals. In this study, the metal binding of citrus dehydrin is reported and the specific domain responsible is identified. The metal binding property of citrus dehydrin was tested using immobilized metal ion affinity chromatography (IMAC). Fe3+, Co2+, Ni2+, Cu2+, and Zn2+ bound to citrus dehydrin, but Mg2+, Ca2+, and Mn2+ did not. Among the bound metals, the highest affinity was detected for Cu(2+)-dehydrin binding, which showed a dissociation constant of 1.6 microM. Citrus dehydrin was able to bind up to 16 Cu2+ ions. IMAC indicated that His residues contributed to Cu(2+)-dehydrin binding. The amino acid sequence of CuCOR15 was divided into five domains, of which domain 1 bound Cu2+ most strongly. One portion of domain 1, HKGEHHSGDHH, was the core sequence for the binding. These results suggest that citrus dehydrin binds metals using a specific sequence containing His. Since citrus dehydrin is a radical-scavenging protein, it may reduce metal toxicity in plant cells under water-stressed conditions.  相似文献   

14.
Silica gel bead coated with macroporous chitosan layer (CTS-SiO2) was prepared, and the metal immobilized affinity chromatographic (IMAC) adsorbents could be obtained by chelating Cu2+, Zn2+, Ni2+ ions, respectively on CTS-SiO2, and trypsin could be adsorbed on the IMAC adsorbent through metal–protein interaction forces. Batch adsorption experiments show that adsorption capacity for trypsin on these IMAC adsorbent variated with change of pH. The maximal adsorption reached when the solution was in near neutral pH in all three IMAC adsorbents. Adsorption isothermal curve indicated that maximal adsorption capacity could be found in the Cu2+-CTS-SiO2 with the value of 4980 ± 125 IU g−1 of the adsorbent, while the maximal adsorption capacity for trypsin on Zn2+ and Ni2+ loaded adsorbent was 3762 ± 68 IU g−1 and 2636 ± 53 IU g−1, respectively. Trypsin immobilized on the IMAC beads could not be desorbed by water, buffer and salt solution if the pH was kept in the range of 5–10, and could be easily desorbed from the IMAC beads by acidic solution and metal chelating species such as EDTA and imidazole. The effect of chelated metal ions species on CTS-SiO2 beads on the activity and stability of immobilized trypsin was also evaluated and discussed. Trypsin adsorbed on Zn-IMAC beads retained highest amount of activity, about 78% of total activity could be retained. Although the Cu-IMAC showed highest affinity for trypsin, only 25.4% of the calculated activity was found on the beads, while the activity recovery found on Ni-IMAC beads was about 37.1%. A remarkable difference on stability of trypsin immobilized on three kinds of metal ion chelated beads during storage period was also found. Activity of trypsin on Cu-IMAC decreased to 24% of its initial activity after 1-week storage at 4 °C, while about 80% activity was retained on both Ni-IMAC and Zn-IMAC beads. Trypsin immobilized on Zn-CTS-SiO2 could effectively digest BSA revealed by HPLC peptide mapping.  相似文献   

15.
The interaction of different species variants of cytochrome c and myoglobin, as well as hen egg white lysozyme, with the hard Lewis metal ions Al3+, Ca2+, Fe3+, and Yb3+ and the borderline metal ion Cu2+, immobilized to iminodiacetic acid (IDA)-Sepharose CL-4B, has been investigated over the rangepH 5.5–8.0. With appropriately chosen buffer and metal ion conditions, these proteins can be bound to the immobilized M n +-IDA adsorbents via negatively charged amino acid residues accessible on the protein surface. For example, tuna heart cytochrome c, which lacks surface-accessible histidine residues, readily bound to the Fe3+-IDA adsorbent, while the other proteins also showed affinity toward immobilized Fe3+-IDA adsorbents when buffers containing 30 mM of imidazole were used. These studies document that protein selectivity can be achieved with hard-metalion immobilized metal ion affinity chromatography (IMAC) systems through the interaction of surfaceexposed aspartic and glutamic acid residues on the protein with the immobilized M n +-IDA complex. These investigations have also documented that the so-called soft or borderline immobilized metal ions such as the Cu2+-IDA adsorbent can also interact with surface-accessible aspartic and glutamic acid residues in a protein-dependent manner. A relationship is evident between the number and extent of clustering of the surfaceaccessible aspartic and glutamic acid residues and protein selectivity with these IMAC systems. The use of elution buffers which contain organic compound modifiers which replicate the carboxyl group moieties of these amino acids on the surface of proteins is also described.Abbreviations IDA iminodiacetic acid - IDA-Mn+ iminodiacetic acid chelated to metal ion - IMAC immobilized metal affinity chromatography - DHCC dog heart cytochrome c - HHCC horse heart cytochrome c, THCC, tuna heart cytochrome c - HMYO horse skeletal muscle myoglobin - SMYO sheep skeletal muscle myoglobin - HEWL hen egg white lysozyme  相似文献   

16.
The interaction of proteins with immobilized transition-metal ions proceeds via mechanisms influenced by metal type and degree of coordination, variations in mobile phase constituents, and protein surface architecture at or near the metal binding site(s). The contributions each of these variables make toward the affinity of protein surfaces for immobilized metal ions remain empirical. We have used equilibrium binding analyses to evaluate the influence of pH and competitive binding reagents on the apparent equilibrium dissociation constant (Kd) and binding capacity of immobilized Cu(II) and Ni(II) ions for several model proteins of known three-dimensional structure. Linear Scatchard plots suggested that 8/13 of the proteins evaluated interacted with immobilized metal ions via a single class of operational (Kd = 10-700 microM) binding sites. Those proteins with the highest affinities for the immobilized Cu(II) ions (5/13) showed evidence of multiple, non-identical or nonindependent binding sites. The effects of altered metal type, pH, and concentration of competitive affinity reagents (e.g., imidazole, free metal ions) on the apparent Kd and binding capacity varied in magnitude for individual proteins. The presence of free Cu(II) ions did not detectably alter either the affinity or binding capacity of the proteins for immobilized Cu(II) ions. The expected relationship between the relative chromatographic elution sequence and calculated affinity constants was not entirely evident by evaluation under only one set of conditions. Our results demonstrate the utility of nonchromatographic equilibrium binding analyses for the quantitative evaluation of experimental variables affecting the relative affinity and capacity of immobilized metal ions for proteins. This approach affords the opportunity to improve understanding and to vary the contribution of interaction mechanisms involved.  相似文献   

17.
Dutta SJ  Liu J  Hou Z  Mitra B 《Biochemistry》2006,45(18):5923-5931
ZntA from Escherichia coli is a member of the P1B-type ATPase family that confers resistance specifically to Pb2+, Zn2+, and Cd2 salts by active efflux across the cytoplasmic membrane. P1B-type ATPases are important for homeostasis of metal ions such as Cu+, Ag+, Pb2+, Zn2+, Cd2+ Cu2+, and Co2+, with different subgroups showing specificity for different metal ions. Sequence alignments of P1B-type ATPases show that ZntA and close homologues have a strictly conserved Asp714 in the eighth transmembrane domain that is not conserved in other subgroups of P1B-type ATPases. However, in the sarcoplasmic reticulum Ca2+-ATPase, a structurally characterized P-type ATPase, the residue corresponding to Asp714 is a metal-binding residue. Four site-specific mutants at Asp714, D714E, D714H, D714A, and D714P, were characterized. A comparison of their metal-binding affinity with that of wtZntA revealed that Asp714 is a ligand for the metal ion in the transmembrane site. Thus, Asp714 is one of the residues that determine metal ion specificity in ZntA homologues. All four substitutions at Asp714 in ZntA resulted in complete loss of in vivo resistance activity and complete or large reductions in ATPase activity, though D714E and D714H retained the ability to bind metal ions with high affinity at the transmembrane site. Thus, the ability to bind metal ions with high affinity did not correlate with high activity. The metal-binding affinity of the N-terminal site remained unchanged in all four mutants. The affinities of the two metal-binding sites in wtZntA determined in this study are similar to values reported previously for the individual sites in isolated ZntA fragments.  相似文献   

18.
The separation of three sets of standard protein mixtures on a high-performance immobilized metal ion affinity chromatography (HP-IMAC) column by elution with linear gradients of imidazole is described. The affinity of the test proteins for the immobilized metal ions follows the order Cu2+ greater than Ni2+ greater than Zn2+. The iminodiacetic acid-Cu2+ column gives the best resolution of all three protein mixtures and is the only immobilized metal ion column that can be used for elution of absorbed proteins with a decreasing pH gradient. An application of HP-IMAC for the separation of monoclonal IgG from mouse ascites fluid is also outlined. This versatile separation method is thus suitable for both analytical and preparative separations of proteins and peptides resulting in high recoveries and good reproducibility. The leakage of immobilized metal ions from the TSK gel chelate-5PW is apparent if the column is eluted by buffers containing low concentrations of (i) glycine or (ii) primary amines at round neutral pH. Considerable amounts of immobilized Zn2+ and Ni2+ ions also leak from the column by washing with buffers of pH 4.5 or lower. However, all three immobilized metal ions are stable toward exposure to low concentrations of imidazole (up to 50 mM) in phosphate buffers between pH 6.5 and 8.0. Adsorbed proteins could thus be eluted conveniently by using linear gradients of imidazole to give reproducible results. Moreover, this elution procedure made it possible to use the IMAC columns for repeated runs without the need for regeneration and recharging of the columns with fresh metal ions after each use.  相似文献   

19.
The influence of Ca2+, Mg2+, Mn2+, Sr2+, La3+, Nd3+, Sm3+, Eu3+, and Gd3+ ions on the binding of labeled, stable enkephalin analogue, [3H-Tyr1, D-Ala2, D-Leu5]enkephalin, to opiate receptors of the rat brain membrane preparations has been investigated. The formation of the complex can be described by a scheme involving at least two independent binding sites. The high affinity site does not discriminate the divalent and trivalent metal ions: all examined cations enhanced the enkephalin affinity for this site. The ligand binding to the low affinity site is potentiated only by Mn2+, Mg2+, and lathanoides. The maximal concentration of the binding sites of the above two types is not affected by the cations. The increase in the ionic strength of the solution entails a decrease in the affinity of the ligand for the high affinity binding site. It is shown that the effect of both di- and trivalent metal cations on the [3H-Tyr1, D-Ala2, D-Leu3] enkephalin binding is mediated through one cation attachment site on the respective enkephalin receptor.  相似文献   

20.
Mauk MR  Rosell FI  Mauk AG 《Biochemistry》2007,46(51):15033-15041
Two spectroscopically distinct, non-interconverting forms of human hemopexin have been isolated by immobilized metal ion affinity chromatography and characterized spectroscopically. Form alpha (characterized by a bisignate Soret CD spectrum) and form beta (Soret CD characterized by a positive Cotton effect) exhibit different spectroscopic responses to addition of Zn2+ or Cu2+, yet both forms exhibit the same metal ion-induced decrease in Tm for the thermally induced release of the heme prosthetic group. Far UV-CD spectra indicate that the two isoforms possess essentially identical secondary structures, but their differential retention during metal ion affinity chromatography indicates slight differences in exposure of His residues on the protein surface. We propose that these observations result from the binding of heme in form beta with an orientation that differs from the crystallographically observed binding orientation for rabbit hemopexin by rotation of the heme prosthetic group by 180 degrees about the alpha-gamma meso-carbon axis and from interaction of metal ions at two separate binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号