首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the past few years, the signal transduction of the plant hormone abscisic acid (ABA) has been studied extensively and has revealed an unanticipated complex. ABA, characterized as an intracellular messenger, has been proven to act a critical function at the heart of a signaling network operation. It has been found that ABA plays an important role in improving plant tolerance to cold, as well as triggering leaf senescence for years. In addition, there have been many reports suggesting that the signaling pathways for leaf senescence and plant defense responses may overlap. Therefore, the objective was to review what is known about the involvement of ABA signaling in plant responses to cold stress and regulation of leaf senescence. An overview about how ABA is integrated into sugars and reactive oxygen species signaling pathways, to regulate plant cold tolerance and leaf senescence, is provided. These roles can provide important implications for biotechnologically improving plant cold tolerance.  相似文献   

3.
4.
Sugars such as sucrose serve dual functions as transported carbohydrates in vascular plants and as signal molecules that regulate gene expression and plant development. Sugar-mediated signals indicate carbohydrate availability and regulate metabolism by co-coordinating sugar production and mobilization with sugar usage and storage. Analysis of mutants with altered responses to sucrose and glucose has shown that signaling pathways mediated by sugars and abscisic acid interact to regulate seedling development and gene expression. Using a novel screen for sugar-response mutants based on the activity of a luciferase reporter gene under the control of the sugar-inducible promoter of the ApL3 gene, we have isolated high sugar-response (hsr) mutants that exhibit elevated luciferase activity and ApL3 expression in response to low sugar concentrations. Our characterization of these hsr mutants suggests that they affect the regulation of sugar-induced and sugar-repressed processes controlling gene expression, growth, and development in Arabidopsis. In contrast to some other sugar-response mutants, they do not exhibit altered responses to ethylene or abscisic acid, suggesting that the hsr mutants may have a specifically increased sensitivity to sugars. Further characterization of the hsr mutants will lead to greater understanding of regulatory pathways involved in metabolite signaling.  相似文献   

5.
Cold is one of the critical environmental conditions that negatively affects plant growth and development and determines the geographic distribution of plants. Cold stress signaling is dynamic and interacts with many other signal transduction pathways to efficiently cope with adverse stress effects in plants. The cold signal is primarily perceived via Ca2+ channel proteins, membrane histidine kinases, or unknown sensors, which then activate the sophisticated cold-responsive signaling pathways in concert with phytohormone signaling, the circadian clock, and the developmental transition to flowering, as a part of the stress adaptation response. In this review, we focus on crosstalk between cold signaling and other signal transduction pathways in Arabidopsis.  相似文献   

6.
7.
8.
The molecular details of sugar sensing and sugar-mediated signal transduction pathways are unclear but recent results suggest that hexokinase functions as an important plant sugar sensor in a way that is similar to that found in yeast. The use of mutants in Arabidopsis defective in specific signaling steps is of particular importance because these give access to the genes encoding components in the signaling pathways. In addition, the physiological analysis of such mutants may reveal the interaction of sugar-induced signaling pathways and those induced by other stimuli such as environmental or biotic stress.  相似文献   

9.
Signal transduction pathways often modulate both positively and negatively acting components to optimize the efficiency of a signal. Recent results have shown that plants make extensive use of regulated proteolysis to modulate signal transduction pathways. An emerging theme from hormone (e.g. auxin and gibberellin) and light signaling pathways is signal or stimulus-induced degradation of negative regulators to optimize plant growth and development.  相似文献   

10.
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.  相似文献   

11.
Comparison of phytohormone signaling mechanisms   总被引:1,自引:0,他引:1  
Plant hormones are crucial signaling molecules that coordinate all aspects of plant growth, development and defense. A great deal of attention has been attracted from biologists to study the molecular mechanisms for perception and signal transduction of plant hormones during the last two decades. Tremendous progress has been made in identifying receptors and key signaling components of plant hormones. The holistic picture of hormone signaling pathways is extremely complicated, this review will give a general overview of perception and signal transduction mechanisms of auxin, gibberellin, cytokinin, abscisic acid, ethylene, brassinosteroid, and jasmonate.  相似文献   

12.
13.
Developmental programmed cell death in plants   总被引:16,自引:0,他引:16  
Mechanisms of plant developmental programmed cell death (PCD) have been intensively studied in recent years. Most plant developmental PCD is triggered by plant hormones, and the 'death signal' may be transduced by hormonal signaling pathways. Although there are some fundamental differences in the regulation of developmental PCD in various eukaryotes of different kingdoms, hormonal control and death signal transduction via pleiotropic signaling pathways constitute a common framework. However, plants possess a unique process of PCD execution that depends on vacuolar lytic function. Comparisons of the developmental PCD mechanisms of plants and other organisms are providing important insights into the detailed characteristics of developmental PCD in plants.  相似文献   

14.
15.
Chemical signaling under abiotic stress environment in plants   总被引:1,自引:0,他引:1  
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca2+), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca2+ is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca2+ sensors detect the Ca2+ signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.Key words: ABA, abiotic stress, Ca2+ binding proteins, calcium signaling, cyclic nucleotides, nitric oxide, phosphoinositides signaling, signal transduction, sugar signaling  相似文献   

16.
Sugar and phytohormone response pathways: navigating a signalling network   总被引:13,自引:0,他引:13  
Many plant developmental, physiological and metabolic processes are regulated, at least in part, by nutrient availability. In particular, alterations in the availability of soluble sugars, such as glucose and sucrose, help regulate a diverse array of processes. Multiple lines of evidence indicate that many of these processes are also regulated in response to other signalling molecules, such as phytohormones. This review draws examples from a variety of plant systems, including bean, Arabidopsis, potato, and cereals. Five of the most interesting and best developed examples of processes regulated via 'interactions' or 'crosstalk' between sugars and phytohormones are described, including embryogenesis, seed germination, early seedling development, tuberization, and the regulation of alpha-amylase activity. The types of mechanisms by which different response pathways are known or postulated to interact are also described. These mechanisms include regulation of the metabolism and/or transport of a signalling molecule by a different response pathway. For example, sugars have been postulated to help regulate the synthesis, conjugation and/or transport of phytohormones, such as gibberellins and abscisic acid. Conversely, phytohormones, such as abscisic acid, gibberellins and cytokinins have been shown to help regulate sugar metabolism and/or transport. Similarly, sugars have been shown to regulate the expression of components of phytohormone-response pathways and phytohormones regulate the expression of some genes encoding possible components of sugar-response pathways. Examples of proteins and second messengers that appear to act in multiple response pathways are also described.  相似文献   

17.
18.
19.
Abiotic and biotic stresses are the major factors that negatively impact plant growth. In response to abiotic environmental stresses such as drought, plants generate resistance responses through abscisic acid (ABA) signal transduction. In addition to the major role of ABA in abiotic stress signaling, ABA signaling was reported to downregulate biotic stress signaling. Conversely recent findings provide evidence that initial activation of plant immune signaling inhibits subsequent ABA signal transduction. Stimulation of effector-triggered disease response can interfere with ABA signal transduction via modulation of internal calcium-dependent signaling pathways. This review overviews the interactions of abiotic and biotic stress signal transduction and the mechanism through which stress surveillance system operates to generate the most efficient resistant traits against various stress condition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号