首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic hydrolysis conducted in a medium composed of solely substrate is considered to resolve racemic ketoprofen esters. In a system composed of two components, the pure liquid substrate (organic phase) and water (aqueous phase), hydrolysis products can be efficiently removed from the reaction mixtures. Accordingly, in this study we designed a solvent-free two-phase system for the enantioselective enzymatic hydrolysis of ketoprofen esters. In order to further optimize this system, the influences of various factors, such as the pH of the aqueous phase, temperature, enzyme content, and the alcohol chain length of esters, were examined on conversion and enantiomeric excess. 1N NaHCO3 was identified as the most efficient aqueous phase for the extraction of ketoprofen. Changes in the amount of enzyme did not significantly affect the maximum conversion or the enantiomeric excess. On the other hand, ketoprofen esters with shorter alcohol chains displayed higher initial reaction rates and conversions in solventless media. In the case of ketoprofen propyl ester, for example, the productivity of the solvent-free two-phase system was about 10–100 times higher than that obtained to date for ketoprofen esterification with alcohols in organic solvents. The enantioselectivities obtained in solvent-free media were similar to those obtained for the enantioselective esterification of ketoprofen in organic solvents.  相似文献   

2.
The kinetics of butyl butyrate synthesis by a lipase from Mucor miehei in different types of organic media were investigated. The three systems studied were a microaqueous medium containing enzyme in suspension in hexane, a water-hexane two-phase system, and reverse micelles. The synthesis of butyl butyrate was possible in all cases because of a favorable partition of the ester into the organic solvent. A sufficient stirring rate was necessary to achieve good reaction rates in the case of the liquid-liquid biphasic medium. The effect of water content was different according to the type of system used. The dependence of reaction rate and of conversion yield on enzyme and substrate concentrations was also investigated. From an applied point of view, the best performances were obtained with either microaqueous or liquid-liquid two-phase systems. The use of reverse micelles can be advocated only in particular conditions, such as low enzyme concentration, compatible with the specific constraints it involves.  相似文献   

3.
Bioconversion of cinnamyl alcohol to cinnamaldehyde was carried out in an aqueous-organic two-phase reaction system by the repeated use of horse liver alcohol dehydrogenase (HLADH) and NAD + with coenzyme regeneration. Both HLADH and the coenzyme were efficiently entrapped in the aqueous phase, while the substrate was supplied successively from the organic phase and the product was accumulated in the organic phase. Optimum conditions for cinnamaldehyde production in the aqueous-organic two-phase system were also examined, including substrate concentration, pH, and organic solvent type. Under suitable conditions, both HLADH and NAD + in the aqueous-organic two-phase system could be reused, and NAD + cycling numbers of 3040 were obtained after repeated operation for 40 &#117 h.  相似文献   

4.
Bioconversion of cinnamyl alcohol to cinnamaldehyde was carried out in an aqueous-organic two-phase reaction system by the repeated use of horse liver alcohol dehydrogenase (HLADH) and NAD + with coenzyme regeneration. Both HLADH and the coenzyme were efficiently entrapped in the aqueous phase, while the substrate was supplied successively from the organic phase and the product was accumulated in the organic phase. Optimum conditions for cinnamaldehyde production in the aqueous-organic two-phase system were also examined, including substrate concentration, pH, and organic solvent type. Under suitable conditions, both HLADH and NAD + in the aqueous-organic two-phase system could be reused, and NAD + cycling numbers of 3040 were obtained after repeated operation for 40 λh.  相似文献   

5.
Using free and immobilized whole cells of Pichia pastoris, the biocatalytic oxidation of benzyl alcohol was investigated in different two-phase systems. This reaction was strongly influenced by both the substrate and product inhibitions, and the production rate of benzaldehyde in the aqueous system became maximum at the initial substrate concentration of ca. 29 g/L with the aldehyde formation less than 4 to 5 g/L even after a longer reaction period. The reaction rates in the two-liquid phase systems were predominantly determined by the partitioning behaviors of the substrate and product between the two phases rather than by enzyme deactivation by the organic solvents. In the two-liquid phase systems, consequently, the organic solvent acted as a reservior to reduce these inhibitory effects, and it was essential to select the organic solvent providing the optimal partitioning of the substrate into the aqueous phase as well as the preferential extraction of the product into the organic phase. The whole cells immobilized in a mixed matrix composed of silicone polymer [>50% (v/v)] and Ca alginate gel (<50%) worked well in the xylene and decane media, providing comparable activities with the free cells. The production rate of aldehyde was also influenced by the solute partitioning into the hydrophilic alginate phase where the cells existed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
Alginate was evaluated as an immobilization matrix for enzyme-catalyzed reactions in organic solvents. In contrast to most hydrogels, calcium alginate was found to be stable in a range of organic solvents and to retain the enzyme inside the gel matrix. In hydrophobic solvents, the alginate gel (greater than 95% water) thus provided a stable, two-phase liquid system. The lipase from Candida cylindracea, after immobilization in alginate beads, catalysed esterification and transesterification in n-hexane under both batch and continuous-flow conditions. The operational stability of the lipase was markedly enhanced by alginate entrapment. In the esterification of butanoic acid with n-butanol, better results were obtained in the typical hydrophilic calcium alginate beads than in less hydrophilic matrices. The effects of substrate concentration, matrix area, and polarity of the substrate alcohols and of the organic solvent on the esterification activity were examined. The transesterification of octyl 2-bromopropanoate with ethanol was less efficient than that of ethyl 2-bromopropanoate with octanol. By using the hydrophilic alginate gel as an immobilization matrix in combination with a mobile hydrophobic phase, a two-phase liquid system was achieved with definite advantages for a continuous, enzyme-catalysed process.  相似文献   

7.
Hydrolysis of soluble starch by glucoamylase and β-amylase was investigated as a model reaction in an aqueous two-phase system consisting of polyethylene glycol (PEG) and dextran (DEX). Changes in glucose concentration observed in the batch reaction experiments with glucoamylase were almost identical for the aqueous two-phase and pure water systems, showing that the enzymic reactions investigated were not influenced by the presence of PEG and DEX. The partition of β-amylase into the DEX phase was insufficient compared to that of glucoamylase. Hence, the former enzyme was crosslinked with glutaraldehyde to increase its apparent molecular weight and, as a consequence, the partition coefficient, defined as the concentration ratio of the component partitioned into the PEG phase to that into the DEX phase, was decreased to 17% of that of the original enzyme. In the operation in which the enzyme and substrate are partitioned selectively into the DEX phase and allowed to react there while the product, thus transferring to the PEG phase, is recovered, the aqueous two-phase system with a smaller partition coefficient provided longer operational stability.  相似文献   

8.
The activity of bilirubin oxidase toward bilirubin was studied in a liquid/solid two-phase low-water organic system using a simple spectrophotometric assay to follow the reaction. The enzyme was lyophilized from aqueous solution before being suspended in the organic solvent reaction medium. The activity was significantly influenced by the properties of the aqueous medium from which the enzyme was lyophilized, specifically its pH, and the quantity and nature of the buffering species. Analyses of these effect showed that the role of buffering species in such systems went beyond their effect in fixing the protonation state of the enzyme. The activity was also influenced by the quantity of water added to the organic solvent reaction medium. The reaction was shown to follow Michaelis-Menten Kinetics, and K(m) and k(cat) were determined. The liquid/solid two-phase system studied was extensively compared to a previously studied water-in-oil microemulsion system (c) 1993 Wiley & Sons, Inc.  相似文献   

9.
Aqueous/organic two-phase systems have been evaluated for enhanced production of (R)-phenylacetylcarbinol (PAC) from pyruvate and benzaldehyde using partially purified pyruvate decarboxylase (PDC) from Candida utilis. In a solvent screen, octanol was identified as the most suitable solvent for PAC production in the two-phase system in comparison to butanol, pentanol, nonanol, hexane, heptane, octane, nonane, dodecane, methylcyclohexane, methyl tert butyl ether, and toluene. The high partitioning coefficient of the toxic substrate benzaldehyde in octanol allowed delivery of large amounts of benzaldehyde into the aqueous phase at a concentration less than 50 mM. PDC catalyzed the biotransformation of benzaldehyde and pyruvate to PAC in the aqueous phase, and continuous extraction of PAC and byproducts acetoin and acetaldehyde into the octanol phase further minimized enzyme inactivation, and inhibition due to acetaldehyde. For the rapidly stirred two-phase system with a 1:1 phase ratio and 8.5 U/mL carboligase activity, 937 mM (141 g/L) PAC was produced in the octanol phase in 49 h with an additional 127 mM (19 g/L) in the aqueous phase. Similar concentrations of PAC could be produced in the slowly stirred phase separated system at this enzyme level, although at a much slower rate. However at lower enzyme concentration very high specific PAC production (128 mg PAC/U carboligase at 0.9 U/mL) was achieved in the phase separated system, while still reaching final PAC levels of 102 g/L in octanol and 13 g/L in the aqueous phase. By comparison with previously published data by our group for a benzaldehyde emulsion system without octanol (50 g/L PAC, 6 mg PAC/U carboligase), significantly higher PAC concentrations and specific PAC production can be achieved in an octanol/aqueous two-phase system.  相似文献   

10.
Optically active D-arylglycines, which are of interest for preparation of semisynthetic penicillins and cephalosporins, were isolated from the racemic mixtures of their derivatives using immobilized proteolytic enzyme subtilisin (EC No. 3.4.4. 16). The performance of these reactions in two-phase systems, consisting of water and an immiscible organic solvent, improved the yield, purity, and economics of the process by increasing the substrate solubility and reducing the rate of nonenzymatic hydrolysis. The proportion of the organic phase can be as much as 75% of the overall volume without seriously impairing the enzymatic activity. The optically pure D-and L-arylglycines were liberated from their D- and L-derivatives by acid hydrolysis. The substituent influence of the various arylglycine derivatives on the rate of the enzymatic cleavage reaction was investigated.  相似文献   

11.
An aqueous two-phase system of dextran and polyethylene glycol was investigated as a reaction medium for pig liver microsomes in order to find out if the partition of the microsomes, of the substrate 7-ethoxycoumarin and of the product 7-hydroxycoumarin favoured any biotechnological perspectives. Cytochrome-P-450 and NADPH-cytochrome P-450 reductase concentrations and the monooxygenase 7-ethoxycoumarin deethylation activity were measured under a variety of the system parameters. Microsomes totally partition into the bottom phase whereas the concentration ratio of substrate to product is higher in the microsome free top phase. An unfavourable effect is the specific partial deactivation of the cytochrome P-450 by polyethylene glycol.  相似文献   

12.
The reaction rate of two lipase-catalysed reactions, esterification and transesterification, were studied in a liquid/solid two-phase system in order to investigate the effect of water partition between the enzyme preparation and the liquid phase composed of only the reactants, i.e. without the conventional solvents. Lipase from Candida cylindracea was used for these studies. The enzyme was inactive in dehydrated systems. In the case of monoester synthesis, the reaction rate increased with increasing water activity. The reaction rates of the non-specific C. cylindracea lipase-catalysed reactions were very sensitive to the nature of the substrates in this unusual system. For instance, the transesterification reaction rate of ethyl propionate was 48 times higher with nonanol than heptanol in the case of dehydrated substrates, but only 2.2 times higher in the case of water-saturated substrates. The results presented here demonstrate the absolute necessity to consider the polarity of every substrate, because of its ability to modify the water partition between the solid phase (enzyme preparation) and the liquid phase (substrate and product), which results in drastic changes in enzyme activity. Contrary to esterification, which is known to be activated by the water produced, the rate of transesterification remained constant at the beginning of the reaction. However, when transesterification and esterification were carried out in the same liquid phase, the transesterification reaction rate was controlled by the water produced by the concomitant esterification. Activation effects of the water molecules produced during the enzymatic reaction were of exactly the same order of magnitude for both reactions.  相似文献   

13.
The aim of this study was to investigate the effect of various bile acids on hepatic type I 11β-hydroxysteroid dehydrogenase (11β-HSD1) activity in vitro. The rat liver microsome fraction was prepared and 11β-HSD1 activity was assayed using cortisol and corticosterone as substrates for the enzyme reaction. The substrate and various concentrations of bile acids were added to the assay mixture. After incubation, the products were extracted and analyzed using high-performance liquid chromatography. All bile acids tested except deoxycholic acid and 7-keto bile acids inhibited the 11β-HSD1 enzyme reaction to some degree. Ursodeoxycholic acid inhibited the activity less than cholic, chenodeoxycholic, and lithocholic acids. Deoxycholic acid and 7-keto bile acids did not inhibit, but enhanced the enzyme activity. Inhibitions of dehydrogenation by corticosterone were weaker than those by cortisol. Kinetic analysis revealed that the inhibition of 11β-HSD1 was competitive. The inhibition of 11β-HSD1 by bile acids depended on the three-dimensional structural difference in the steroid rings and the presence of the 7α-hydroxy molecule of the bile acids was important for the inhibition of rat hepatic 11β-HSD1 enzyme activity. These results suggest that bile acid administration might modulate 11β-HSD1 enzyme activity.  相似文献   

14.
Lipase from Mucor miehei was used to catalyse the esterification reaction between propionic acid and methyl alcohol in modified organic media. Small-scale model studies were performed in order to define the optimal conditions. The specific activity of immobilized lipase, adsorbed onto hydrophilic supports, compared to free lipase, showed that enzyme activity was altered by immobilisation. Non-polar solvents were shown to be less harmful for the biocatalyst than solvents with higher polarity. Diethyl ether was used as the cosolvent of hexane to improve the solubility of substrates in the organic phase thus increasing contact with enzyme. An optimal ratio of 90/10 (v/v) was determined for a hexane/diethyl ether mixture. The mass of enzyme preparation must be high enough to display optimal diffusion of the reagents and hydration of the catalytic sites. Increased substrate concentrations were stimulatory up to a point after which inhibition and enzyme destabilisation, in repeated runs, occurred. Water saturation of the organic medium greatly lowered the biosynthetic activity of the enzyme. It was possible to reach a 96% methyl propionate biosynthesis yield after 2.30 h reaction, underlining the free-enzyme operational capacity in a quasi-anhydrous modified organic medium.  相似文献   

15.
Recently we have demonstrated the advantage of solid- phase substrate pools mainly in equilibrium controlled protease-catalysed peptide syntheses. The extension of this approach to protease-catalysed acyl transfer reactions will be presented. The model reaction was systematically investigated according to both the influence of solid phases present in the system on enzyme activity as well as nucleophile concentration on peptide yield. The key parameter for obtaining high peptide yield via acyl transfer is the ratio between aminolysis and hydrolysis. We combined high nucleophile concentrations with solid-phase acyl donor pools. This approach enabled us to supply ester substrate and nucleophile in equimolar amounts in a high-density media without the addition of any organic solvent. Several multi-functional di- to tetrapeptides were obtained in moderate to high yields. ©1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The process of progesterone 11α-hydroxylation by the pelleted growth form of the filamentous fungus Rhizopus nigricans has been described with a mathematical model, based on Michaelis-Menten enzyme kinetics and the rate of substrate dissolution. It was confirmed that the low water solubility of steroids is the limiting step of this process at high steroid concentrations. In order to overcome this problem, β-cyclodextrin, which is known to form inclusion complexes with these organic compounds, was added to the production medium. The phase solubility of the steroid-β-cyclodextrin system was investigated and the effect of β-cyclodextrin addition on progesterone biotransformation evaluated. Enhancement of steroid solubility was demonstrated and nearly two-fold increase in reaction rate was found in the presence of β-cyclodextrin.  相似文献   

17.
Two microorganisms showing high omicron-transaminase activity (Klebsiella pneumoniae JS2F and Bacillus thuringiensis JS64) were screened by the enrichment method using (S)-alpha-methylbenzylamine (alpha-MBA) as a sole nitrogen source. Optimal carbon and nitrogen sources for enzyme induction and the properties of omicron-transaminases were investigated. omicron-Transaminase from B. thuringiensis JS64 was highly enantioselective (E = 75.3) for (S)-enantiomer of alpha-MBA and showed remarkable stability. However, omicron-transaminase showed severe product inhibition by acetophenone. An aqueous/organic two-phase system was introduced to overcome this problem. Through solvent screening, cyclohexanone and ethyl acetate were selected as the best organic phases. The acetophenone-extracting capacity of the solvent and the biocompatibility of the solvent to the cell were important determinants in the reaction rate at high concentrations of alpha-MBA. The reaction rate of omicron-transamination was strongly influenced by the volume ratio of organic phase to aqueous phase as well as agitation speed in the biphasic mixture. Using the optimal volume ratio (Vorg:Vaq = 1:4) in the biphasic system with cyclohexanone, the reaction rate of omicron-transaminase under vigorous mixing conditions increased ninefold compared with that in the monophasic aqueous system. At the same optimal conditions, using whole cells, 500 mM alpha-MBA could be resolved successfully to above 95% enantiomeric excess of (R)-alpha-MBA with ca. 51% conversion. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 348-358, 1997.  相似文献   

18.
The effects of different metal chelating agents on the activity of the NADP-linked isocitrate dehydrogenase from pig heart have been studied. Addition of ethylene glycolbis(β-aminoethyleter) N,N′-tetraacetic acid, N-hydroxyethylenediamine triacetic acid, and ethylenediamine tetraacetic acid (EDTA) under certain conditions could enhance the activity by a factor of nearly 3. Moreover, the time lag occurring before the reaction rate approached a constant value at suboptimal metal-ion concentrations was abolished by the metal chelating agents. S0.5 for isocitrate increased slightly in the presence of the metal-chelating agents. The substrate inhibition occurring at high NADP concentrations was abolished by the activator. The pH optimum was the same in the absence and presence of EDTA. The extent of activation increased on a relative basis with increasing pH. Studies of the sedimentation behavior of the enzyme under different conditions suggested that the effect of the metal-chelating agents could not be accounted for by aggregation or depolymerization of the enzyme. NADPH affects the enzyme activity in a similar way, although less efficiently than the metal chelating agents. The results indicate that most organic metal complexes can activate the enzyme. It has previously been suggested that isocitrate complexed with a metal ion is the real substrate for the enzyme. If this holds true, the activation found with other organic metal complexes can be accounted for by a reduction in the apparent Km for the isocitrate metal complex and by an increase in the maximum rate of the reaction by removal of the substrate inhibition at high NADP concentrations.  相似文献   

19.
A low-water organic solvent two-phase system suitable for glycosylation of hydrophobic substrates is described. Almond β-glucosidase adsorbed on polymeric supports has been shown to catalyse alkyl-β-glucoside synthesis via a transferase reaction or through direct condensation of the glucosidic bond. High concentrations of glucosyl donors were present in the aqueous phase, while water-immiscible primary alcohols, which form the organic phase, served as acceptors of glucose. Reaction yield appeared to be thermodynamically controlled. The influence of various support materials, glucosyl donors, and glucosyl acceptors on reaction rate and product yield was investigated.  相似文献   

20.
A two-phase organic-aqueous system was used to degrade phenol in both batch and fed-batch culture. The solvent, which contained the phenol and partitioned it into the aqueous phase, was systematically selected based on volatility, solubility in the aqueous phase, partition coefficient for phenol, biocompatibility, and cost. The two-phase partitioning bioreactor used 500 mL of 2-undecanone loaded with high concentrations of phenol to deliver the xenobiotic to Pseudomonas putida ATCC 11172 in the 1-L aqueous phase, at subinhibitory levels. The initial concentrations of phenol selected for the aqueous phase were predicted using the experimentally determined partition coefficient for this ternary system of 47.6. This system was initially observed to degrade 4 g of phenol in just over 48 h in batch culture. Further loading of the organic phase in subsequent experiments demonstrated that the system was capable of degrading 10 g of phenol to completion in approximately 72 h. The higher levels of phenol in the system caused a modest increase in the duration of the lag phase, but did not lead to complete inhibition or cell death. The use of a fed-batch approach allowed the system to ultimately consume 28 g of phenol in approximately 165 h, without experiencing substrate toxicity. In this system, phenol delivery to the aqueous phase is demand based, and is directly related to the metabolic activity of the cells. This system permits high loading of phenol without the corresponding substrate inhibition commonly seen in conventional bioreactors. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 155-162, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号