共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A developmental electron microscopic study of the parasitism of Rolylenchulus reniforrnis in resistant ''Peking'' and susceptible ''Lee'' soybeans was made during a 21-day period under controlled conditions. Within 2 days of inoculation, the nematode had penetrated the cortical cells to the endodermis where it inserted its stylet, secreted and initiated syncytial formation and cell hypertrophy. Syncytia primarily involved pericycle tissues and, to a lesser extent, xylem parenchyma and endodermis. When identifiable, the cell into which the nematode stylet was inserted to initiate syncytial development was endodermal. Susceptible tissues exhibited two basic phases of development during this infection period: (i) an initial phase represented by partial cell wail lysis and separation; and (ii) an anabolic phase, characterized by organelle proliferation and development accompanied by secondary wall deposits, which provided nutrition for sessile female development. The resistant or hypersensitive reaction (HR) lacked the anabolic phase found in the susceptible reaction, and was characterized by an extension and usually accelerated type of Iysis found in the first phase of the syncytial development. The HR was usually very evident 4 days after inoculation, and could be identified by an almost complete lysis of the cell walls and cytoplasm. The possibility that the initial cell of the developing syncytium or "prosyncyte" may influence a susceptible or resistant reaction is discussed. Successive stages of cell wall dissolution and the deposition of secondary cell walls are described. 相似文献
5.
Cortical parenchyma cells penetrated and fed upon by Pratylenchus penetrans for 48 hours contained only cytoplasmic debris. Proximal cells had an increase in tannin deposits, degenerated mitochondria, increased numbers of ribosomes, and no internal membrane structure. Often the endodermis was collapsed and contained massive tannin deposits on the inner cell wall and cell lumen. Similar observations were made in the stele, except tannin deposits were not as prominent. Multivesicnlate structures were observed both in the endodermis and in the stele. 相似文献
6.
Maika Deffieu Ingrid Bhatia-Ki??ová Bénédicte Salin Anne Galinier Stéphen Manon Nadine Camougrand 《The Journal of biological chemistry》2009,284(22):14828-14837
The antioxidant N-acetyl-l-cysteine prevented the
autophagy-dependent delivery of mitochondria to the vacuoles, as examined by
fluorescence microscopy of mitochondria-targeted green fluorescent protein,
transmission electron microscopy, and Western blot analysis of mitochondrial
proteins. The effect of N-acetyl-l-cysteine was specific
to mitochondrial autophagy (mitophagy). Indeed, autophagy-dependent activation
of alkaline phosphatase and the presence of hallmarks of non-selective
microautophagy were not altered by N-acetyl-l-cysteine.
The effect of N-acetyl-l-cysteine was not related to its
scavenging properties, but rather to its fueling effect of the glutathione
pool. As a matter of fact, the decrease of the glutathione pool induced by
chemical or genetical manipulation did stimulate mitophagy but not general
autophagy. Conversely, the addition of a cell-permeable form of glutathione
inhibited mitophagy. Inhibition of glutathione synthesis had no effect in the
strain Δuth1, which is deficient in selective mitochondrial
degradation. These data show that mitophagy can be regulated independently of
general autophagy, and that its implementation may depend on the cellular
redox status.Autophagy is a major pathway for the lysosomal/vacuolar delivery of
long-lived proteins and organelles, where they are degraded and recycled.
Autophagy plays a crucial role in differentiation and cellular response to
stress and is conserved in eukaryotic cells from yeast to mammals
(1,
2). The main form of autophagy,
macroautophagy, involves the non-selective sequestration of large portions of
the cytoplasm into double-membrane structures termed autophagosomes, and their
delivery to the vacuole/lysosome for degradation. Another process,
microautophagy, involves the direct sequestration of parts of the cytoplasm by
vacuole/lysosomes. The two processes coexist in yeast cells but their extent
may depend on different factors including metabolic state: for example, we
have observed that nitrogen-starved lactate-grown yeast cells develop
microautophagy, whereas nitrogen-starved glucose-grown cells preferentially
develop macroautophagy (3).Both macroautophagy and microautophagy are essentially non-selective, in
the way that autophagosomes and vacuole invaginations do not appear to
discriminate the sequestered material. However, selective forms of autophagy
have been observed (4) that
target namely peroxisomes (5,
6), chromatin
(7,
8), endoplasmic reticulum
(9), ribosomes
(10), and mitochondria
(3,
11–13).
Although non-selective autophagy plays an essential role in survival by
nitrogen starvation, by providing amino acids to the cell, selective autophagy
is more likely to have a function in the maintenance of cellular structures,
both under normal conditions as a “housecleaning” process, and
under stress conditions by eliminating altered organelles and macromolecular
structures
(14–16).
Selective autophagy targeting mitochondria, termed mitophagy, may be
particularly relevant to stress conditions. The mitochondrial respiratory
chain is both the main site and target of
ROS4 production
(17). Consequently, the
maintenance of a pool of healthy mitochondria is a crucial challenge for the
cells. The progressive accumulation of altered mitochondria
(18) caused by the loss of
efficiency of the maintenance process (degradation/biogenesis de
novo) is often considered as a major cause of cellular aging
(19–23).
In mammalian cells, autophagic removal of mitochondria has been shown to be
triggered following induction/blockade of apoptosis
(23), suggesting that
autophagy of mitochondria was required for cell survival following
mitochondria injury (14).
Consistent with this idea, a direct alteration of mitochondrial permeability
properties has been shown to induce mitochondrial autophagy
(13,
24,
25). Furthermore, inactivation
of catalase induced the autophagic elimination of altered mitochondria
(26). In the yeast
Saccharomyces cerevisiae, the alteration of
F0F1-ATPase biogenesis in a conditional mutant has been
shown to trigger autophagy
(27). Alterations of
mitochondrial ion homeostasis caused by the inactivation of the
K+/H+ exchanger was shown to cause both autophagy and
mitophagy (28). We have
reported that treatment of cells with rapamycin induced early ROS production
and mitochondrial lipid oxidation that could be inhibited by the hydrophobic
antioxidant resveratrol (29).
Furthermore, resveratrol treatment impaired autophagic degradation of both
cytosolic and mitochondrial proteins and delayed rapamycin-induced cell death,
suggesting that mitochondrial oxidation events may play a crucial role in the
regulation of autophagy. This existence of regulation of autophagy by ROS has
received molecular support in HeLa cells
(30): these authors showed
that starvation stimulated ROS production, namely H2O2,
which was essential for autophagy. Furthermore, they identified the cysteine
protease hsAtg4 as a direct target for oxidation by
H2O2. This provided a possible connection between the
mitochondrial status and regulation of autophagy.Investigations of mitochondrial autophagy in nitrogen-starved lactate-grown
yeast cells have established the existence of two distinct processes: the
first one occurring very early, is selective for mitochondria and is dependent
on the presence of the mitochondrial protein Uth1p; the second one occurring
later, is not selective for mitochondria, is not dependent on Uth1p, and is a
form of bulk microautophagy
(3). The absence of the
selective process in the Δuth1 mutant strongly delays and
decreases mitochondrial protein degradation
(3,
12). The putative protein
phosphatase Aup1p has been also shown to be essential in inducing mitophagy
(31). Additionally several Atg
proteins were shown to be involved in vacuolar sequestration of mitochondrial
GFP (3,
12,
32,
33). Recently, the protein
Atg11p, which had been already identified as an essential protein for
selective autophagy has also been reported as being essential for mitophagy
(33).The question remains as to identify of the signals that trigger selective
mitophagy. It is particularly intriguing that selective mitophagy is activated
very early after the shift to a nitrogen-deprived medium
(3). Furthermore, selective
mitophagy is very active on lactate-grown cells (with fully differentiated
mitochondria) but is nearly absent in glucose-grown cells
(3). In the present paper, we
investigated the relationships between the redox status of the cells and
selective mitophagy, namely by manipulating glutathione. Our results support
the view that redox imbalance is a trigger for the selective elimination of
mitochondria. 相似文献
7.
8.
9.
10.
11.
12.
淹水胁迫对不结球白菜根系生长与呼吸酶活性的影响 总被引:2,自引:0,他引:2
采用双套盆法,以不结球白菜‘新矮青’和‘新夏青2号’品种为材料,研究了不同时间(1、3、5、恢复7d后)和不同程度淹水处理(根淹、半淹)后不结球白菜根系生长及呼吸代谢的变化规律。结果显示:(1)与对照相比,淹水胁迫下,不结球白菜幼苗根系鲜重、根系长度、根系活力显著下降,且半淹处理的下降幅度大于根淹处理。(2)淹水胁迫下,乳酸脱氢酶(LDH)、乙醇脱氢酶(ADH)活性较对照显著升高,而苹果脱氢酶(MDH)、琥珀酸脱氢酶(SDH)活性显著降低,且半淹处理的降幅大于根淹,淹水5d后与淹水1d后有显著性差异。(3)淹水胁迫下,‘新矮青’乳酸发酵途径弱于‘新夏青2号’,乙醇发酵则相反,导致后者根系中乳酸积累多于前者,细胞质酸化较严重,降低了对淹水胁迫的耐性。研究表明,不结球白菜幼苗期受到淹水胁迫时,其有氧呼吸明显受阻,无氧呼吸代谢被促进,而且随着淹水时间的延长及淹水深度的加深,根系呼吸代谢受到的抑制程度越严重,最终导致根系生长受到抑制。 相似文献
13.
Molecules produced by Rhizobium meliloti increase respiration of alfalfa (Medicago sativa L.) roots. Maximum respiratory increases, measured either as CO2 evolution or as O2 uptake, were elicited in roots of 3-d-old seedlings by 16 h of exposure to living or dead R. meliloti cells at densities of 107 bacteria/mL. Excising roots after exposure to bacteria and separating them into root-tip- and root-hair-containing segments showed that respiratory increases occurred only in the root-hair region. In such assays, CO2 production by segments with root hairs increased by as much as 100% in the presence of bacteria. Two partially purified compounds from R. meliloti 1021 increased root respiration at very low, possibly picomolar, concentrations. One factor, peak B, resembled known pathogenic elicitors because it produced a rapid (15-min), transitory increase in respiration. A second factor, peak D, was quite different because root respiration increased slowly for 8 h and was maintained at the higher level. These molecules differ from lipo-chitin oligosaccharides active in root nodulation for the following reasons: (a) they do not curl alfalfa root hairs, (b) they are synthesized by bacteria in the absence of known plant inducer molecules, and (c) they are produced by a mutant R. meliloti that does not synthesize known lipo-chitin oligosaccharides. The peak-D compound(s) may benefit both symbionts by increasing CO2, which is required for growth of R. meliloti, and possibly by increasing the energy that is available in the plant to form root nodules. 相似文献
14.
15.
16.
Characterization of Cadmium Binding, Uptake, and Translocation in
Intact Seedlings of Bread and
Durum Wheat Cultivars 总被引:31,自引:1,他引:31 下载免费PDF全文
Jonathan J. Hart Ross M. Welch Wendell A. Norvell Lori A. Sullivan Leon V. Kochian 《Plant physiology》1998,116(4):1413-1420
High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain. 相似文献
17.
Changes in Hexokinase Activity in
Echinochloa
phyllopogon and Echinochloa crus-pavonis in
Response to Abiotic Stress 总被引:1,自引:0,他引:1
Theodore C. Fox Brian J. Green Robert A. Kennedy Mary E. Rumpho 《Plant physiology》1998,118(4):1403-1409
Hexokinase (HXK; EC 2.7.1.1) regulates carbohydrate entry into glycolysis and is known to be a sensor for sugar-responsive gene expression. The effect of abiotic stresses on HXK activity was determined in seedlings of the flood-tolerant plant Echinochloa phyllopogon (Stev.) Koss and the flood-intolerant plant Echinochloa crus-pavonis (H.B.K.) Schult grown aerobically for 5 d before being subjected to anaerobic, chilling, heat, or salt stress. HXK activity was stimulated in shoots of E. phyllopogon only by anaerobic stress. HXK activity was only transiently elevated in E. crus-pavonis shoots during anaerobiosis. In roots of both species, anoxia and chilling stimulated HXK activity. Thus, HXK is not a general stress protein but is specifically induced by anoxia and chilling in E. phyllopogon and E. crus-pavonis. In both species HXK exhibited an optimum pH between 8.5 and 9.0, but the range was extended to pH 7.0 in air-grown E. phyllopogon to 6.5 in N2-grown E. phyllopogon. At physiologically relevant pHs (6.8 and 7.3, N2 and O2 conditions, respectively), N2-grown seedlings retained greater HXK activity at the lower pH. The pH response suggests that in N2-grown seedlings HXK can function in a more acidic environment and that a specific isozyme may be important for regulating glycolytic activity during anaerobic metabolism in E. phyllopogon. 相似文献
18.
Induction and Regulation of Expression of a
Low-CO2-Induced Mitochondrial Carbonic Anhydrase in
Chlamydomonas reinhardtii 总被引:1,自引:0,他引:1 下载免费PDF全文
The time course of and the influence of light intensity and light quality on the induction of a mitochondrial carbonic anhydrase (CA) in the unicellular green alga Chlamydomonas reinhardtii was characterized using western and northern blots. This CA was expressed only under low-CO2 conditions (ambient air). In asynchronously grown cells, the mRNA was detected 15 min after transfer from air containing 5% CO2 to ambient air, and the 21-kD polypeptide was detected on western blots after 1 h. When transferred back to air containing 5% CO2, the mRNA disappeared within 1 h and the polypeptide was degraded within 3 d. Photosynthesis was required for the induction in asynchronous cultures. The induction increased with light up to 500 μmol m−2 s−1, where saturation occurred. In cells grown synchronously, however, expression of the mitochondrial CA was also detected in darkness. Under such conditions the expression followed a circadian rhythm, with mRNA appearing in the dark 30 min before the light was turned on. Algae left in darkness continued this rhythm for several days. 相似文献
19.
Differential Expression of Alternative Oxidase Genes in Soybean
Cotyledons during Postgerminative Development 总被引:3,自引:2,他引:3 下载免费PDF全文
Tulene C. McCabe Patrick M. Finnegan A. Harvey Millar David A. Day James Whelan 《Plant physiology》1998,118(2):675-682
The expression of the alternative oxidase (AOX) was investigated during cotyledon development in soybean (Glycine max [L.] Merr.) seedlings. The total amount of AOX protein increased throughout development, not just in earlier stages as previously thought, and was correlated with the increase in capacity of the alternative pathway. Each AOX isoform (AOX1, AOX2, and AOX3) showed a different developmental trend in mRNA abundance, such that the increase in AOX protein and capacity appears to involve a shift in gene expression from AOX2 to AOX3. As the cotyledons aged, the size of the mitochondrial ubiquinone pool decreased. We discuss how this and other factors may affect the alternative pathway activity that results from the developmental regulation of AOX expression. 相似文献
20.
Since mitochondria play roles in amino acid metabolism, carbohydrate metabolism and fatty
acid oxidation, defects in mitochondrial function often compromise the lives of those who
suffer from these complex diseases. Detecting mitochondrial metabolic changes is vital to
the understanding of mitochondrial disorders and mitochondrial responses to
pharmacological agents. Although mitochondrial metabolism is at the core of metabolic
regulation, the detection of subtle changes in mitochondrial metabolism may be hindered by
the overrepresentation of other cytosolic metabolites obtained using whole organism or
whole tissue extractions. Here we describe an isolation method that detected pronounced mitochondrial metabolic
changes in Drosophila that were distinct between whole-fly and
mitochondrial enriched preparations. To illustrate the sensitivity of this method, we used
a set of Drosophila harboring genetically diverse mitochondrial DNAs
(mtDNA) and exposed them to the drug rapamycin. Using this method we showed that rapamycin
modifies mitochondrial metabolism in a mitochondrial-genotype-dependent manner. However,
these changes are much more distinct in metabolomics studies when metabolites were
extracted from mitochondrial enriched fractions. In contrast, whole tissue extracts only
detected metabolic changes mediated by the drug rapamycin independently of mtDNAs. 相似文献