首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Replication protein A (RPA) is displaced from single-stranded DNA (ssDNA) by Rad51 during the initiation of homologous recombination. Interactions between these proteins have been reported, but the functional significance of the direct RPA-Rad51 interaction has yet to be elucidated. We have identified and characterized the interaction between DNA-binding domain A of RPA (RPA70A) and the N-terminal domain of Rad51 (Rad51N). NMR chemical shift mapping showed that Rad51N binds to the ssDNA-binding site of RPA70A, suggesting a competitive mechanism for the displacement of RPA from ssDNA by Rad51. A structure of the RPA70A-Rad51N complex was generated by experimentally guided modeling and then used to design mutations that disrupt the binding interface. Functional ATP hydrolysis assays were performed for wild-type Rad51 and a mutant defective in binding RPA. Rates of RPA displacement for the mutant were significantly below those of wild-type Rad51, suggesting that a direct RPA-Rad51 interaction is involved in displacing RPA in the initiation stage of genetic recombination.  相似文献   

2.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA- (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV-damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, nuclear magnetic resonance (NMR) spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1–326 (hRPA701–326), and a fragment of the human XPA protein, residues 98–219 (XPA-MBD). Intensity changes were observed for amide resonances in the 1H–15N correlation spectrum of uniformly 15N-labeled hRPA701–326 after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA-binding domain that is between residues 183 and 296 of the hRPA701–326 fragment. The hRPA701–326 residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA-binding domain to identify the binding surface with XPA-MBD. The XPA-MBD-binding surface showed significant overlap with an ssDNA-binding surface that was previously identified using NMR spectroscopy and X-ray crystallography. Overlapping XPA-MBD- and ssDNA-binding sites on hRPA701–326 suggests that a competitive binding mechanism mediates the formation of the RPA–XPA complex. To determine whether a ternary complex could form between hRPA701–326, XPA-MBD and ssDNA, a 1H–15N correlation spectrum was acquired for uniformly 15N-labeled hRPA701–326 after the simultaneous addition of unlabeled XPA-MBD and ssDNA. In this experiment, the same chemical shift perturbations were observed for hRPA701–326 in the presence of XPA-MBD and ssDNA as was previously observed in the presence of ssDNA alone. The ability of ssDNA to compete with XPA-MBD for an overlapping binding site on hRPA701–326 suggests that any complex formation between RPA and XPA that involves the interaction between XPA-MBD and hRPA701–326 may be modulated by ssDNA.  相似文献   

3.
We report that during activation of the simian virus 40 (SV40) pre-replication complex, SV40 T antigen (Tag) helicase actively loads replication protein A (RPA) on emerging single-stranded DNA (ssDNA). This novel loading process requires physical interaction of Tag origin DNA-binding domain (OBD) with the RPA high-affinity ssDNA-binding domains (RPA70AB). Heteronuclear NMR chemical shift mapping revealed that Tag-OBD binds to RPA70AB at a site distal from the ssDNA-binding sites and that RPA70AB, Tag-OBD, and an 8-nucleotide ssDNA form a stable ternary complex. Intact RPA and Tag also interact stably in the presence of an 8-mer, but Tag dissociates from the complex when RPA binds to longer oligonucleotides. Together, our results imply that an allosteric change in RPA quaternary structure completes the loading reaction. A mechanistic model is proposed in which the ternary complex is a key intermediate that directly couples origin DNA unwinding to RPA loading on emerging ssDNA.  相似文献   

4.
Processing of DNA in replication, repair and recombination pathways in cells of all organisms requires the participation of at least one major single-stranded DNA (ssDNA)-binding protein. This protein protects ssDNA from nucleolytic damage, prevents hairpin formation and blocks DNA reannealing until the processing pathway is successfully completed. Many ssDNA-binding proteins interact physically and functionally with a variety of other DNA processing proteins. These interactions are thought to temporally order and guide the parade of proteins that ‘trade places’ on the ssDNA, a model known as ‘hand-off’, as the processing pathway progresses. How this hand-off mechanism works remains poorly understood. Recent studies of the conserved eukaryotic ssDNA-binding protein replication protein A (RPA) suggest a novel mechanism by which proteins may trade places on ssDNA by binding to RPA and mediating conformation changes that alter the ssDNA-binding properties of RPA. This article reviews the structure and function of RPA, summarizes recent studies of RPA in DNA replication and other DNA processing pathways, and proposes a general model for the role of RPA in protein-mediated hand-off.  相似文献   

5.
Replication protein A (RPA) is a heterotrimeric, multi-functional protein that binds single-stranded DNA (ssDNA) and is essential for eukaryotic DNA metabolism. Using heteronuclear NMR methods we have investigated the domain interactions and ssDNA binding of a fragment from the 70 kDa subunit of human RPA (hRPA70). This fragment contains an N-terminal domain (NTD), which is important for hRPA70–protein interactions, connected to a ssDNA-binding domain (SSB1) by a flexible linker (hRPA701–326). Correlation analysis of the amide 1H and 15N chemical shifts was used to compare the structure of the NTD and SSB1 in hRPA701–326 with two smaller fragments that corresponded to the individual domains. High correlation coefficients verified that the NTD and SSB1 maintained their structures in hRPA701–326, indicating weak interdomain coupling. Weak interdomain coupling was also suggested by a comparison of the transverse relaxation rates for hRPA701–326 and one of the smaller hRPA70 fragments containing the NTD and the flexible linker (hRPA701–168). We also examined the structure of hRPA701–326 after addition of three different ssDNA substrates. Each of these substrates induced specific amide 1H and/or 15N chemical shift changes in both the NTD and SSB1. The NTD and SSB1 have similar topologies, leading to the possibility that ssDNA binding induced the chemical shift changes observed for the NTD. To test this hypothesis we monitored the amide 1H and 15N chemical shift changes of hRPA701–168 after addition of ssDNA. The same amide 1H and 15N chemical shift changes were observed for the NTD in hRPA701–168 and hRPA701–326. The NTD residues with the largest amide 1H and/or 15N chemical shift changes were localized to a basic cleft that is important for hRPA70–protein interactions. Based on this relationship, and other available data, we propose a model where binding between the NTD and ssDNA interferes with hRPA70–protein interactions.  相似文献   

6.
Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3974-3984
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein that is composed of subunits of 70, 32, and 14 kDa. RPA is required for multiple processes in cellular DNA metabolism. RPA has been reported to (1) bind with high affinity to single-stranded DNA (ssDNA), (2) bind specifically to certain double-stranded DNA (dsDNA) sequences, and (3) have DNA helix-destabilizing ("unwinding") activity. We have characterized both dsDNA binding and helix destabilization. The affinity of RPA for dsDNA was lower than that of ssDNA and precisely correlated with the melting temperature of the DNA fragment. The rates of helix destabilization and dsDNA binding were similar, and both were slow relative to the rate of binding ssDNA. We have previously mapped the regions required for ssDNA binding [Walther et al. (1999) Biochemistry 38, 3963-3973]. Here, we show that both helix-destabilization and dsDNA-binding activities map to the central DNA-binding domain of the 70-kDa subunit and that other domains of RPA are needed for optimal activity. We conclude that all types of RPA binding are manifestations of RPA ssDNA-binding activity and that dsDNA binding occurs when RPA destabilizes a region of dsDNA and binds to the resulting ssDNA. The 70-kDa subunit of all RPA homologues contains a highly conserved putative (C-X2-C-X13-C-X2-C) zinc finger. This motif directly interacts with DNA and contributes to dsDNA-binding/unwinding activity. Evidence is presented that a metal ion is required for the function of the zinc-finger motif.  相似文献   

7.
The role for zinc in replication protein A   总被引:6,自引:0,他引:6  
Heterotrimeric human single-stranded DNA (ssDNA)-binding protein, replication protein A (RPA), is a central player in DNA replication, recombination, and repair. The C terminus of the largest subunit, RPA70, contains a putative zinc-binding motif and is implicated in complex formation with two smaller subunits, RPA14 and RPA32. The C-terminal domain of RPA70 (RPA70-CTD) was characterized using proteolysis and x-ray fluorescence emission spectroscopy. The proteolytic core of this domain comprised amino acids 432-616. X-ray fluorescence spectra revealed that RPA70-CTD possesses a coordinated Zn(II). The trimeric complex of RPA70-CTD, the ssDNA-binding domain of RPA32 (amino acids 43-171), and RPA14 had strong DNA binding activity. When properly coordinated with zinc, the trimer's affinity to ssDNA was only 3-10-fold less than that of the ssDNA-binding domain in the middle of RPA70. However, the DNA-binding activity of the trimer was dramatically reduced in the presence of chelating agents. Our data indicate that (i) Zn(II) is essential to stabilize the tertiary structure of RPA70-CTD; (ii) RPA70-CTD possesses DNA-binding activity, which is modulated by Zn(II); and (iii) ssDNA binding by the trimer is a synergistic effect generated by the RPA70-CTD and RPA32.  相似文献   

8.
Simian virus 40 (SV40) serves as an important model organism for studying eukaryotic DNA replication. Its helicase, Large T-antigen (Tag), is a multi-functional protein that interacts with multiple host proteins, including the ubiquitous ssDNA binding protein Replication Protein A (RPA). Tag recruits RPA, actively loads it onto the unwound DNA, and together they promote priming of the template. Although interactions of Tag with RPA have been mapped, no interaction between Tag and the N-terminal protein interaction domain of the RPA 70kDa subunit (RPA70N) has been reported. Here we provide evidence of direct physical interaction of Tag with RPA70N and map the binding sites using a series of pull-down and mutational experiments. In addition, a monoclonal anti-Tag antibody, the epitope of which overlaps with the binding site, blocks the binding of Tag to RPA70N. We use NMR chemical shift perturbation analysis to show that Tag uses the same basic cleft in RPA70N as multiple of DNA damage response proteins. Mutations in the binding sites of both RPA70N and Tag demonstrate that specific charge reversal substitutions in either binding partner strongly diminish the interaction. These results expand the known repertoire of contacts between Tag and RPA, which mediate the many critical roles of Tag in viral replication.  相似文献   

9.
Replication protein A (RPA) is a eukaryotic ssDNA-binding protein and contains three subunits: RPA70, RPA32, and RPA14. Phosphorylation of the N-terminal region of the RPA32 subunit plays an essential role in DNA metabolism in processes such as replication and damage response. Phosphorylated RPA32 (pRPA32) binds to RPA70 and possibly regulates the transient RPA70-Bloom syndrome helicase (BLM) interaction to inhibit DNA resection. However, the structural details and determinants of the phosphorylated RPA32–RPA70 interaction are still unknown. In this study, we provide molecular details of the interaction between RPA70 and a mimic of phosphorylated RPA32 (pmRPA32) using fluorescence polarization and NMR analysis. We show that the N-terminal domain of RPA70 (RPA70N) specifically participates in pmRPA32 binding, whereas the unphosphorylated RPA32 does not bind to RPA70N. Our NMR data revealed that RPA70N binds pmRPA32 using a basic cleft region. We also show that at least 6 negatively charged residues of pmRPA32 are required for RPA70N binding. By introducing alanine mutations into hydrophobic positions of pmRPA32, we found potential points of contact between RPA70N and the N-terminal half of pmRPA32. We used this information to guide docking simulations that suggest the orientation of pmRPA32 in complex with RPA70N. Our study demonstrates detailed features of the domain-domain interaction between RPA70 and RPA32 upon phosphorylation. This result provides insight into how phosphorylation tunes transient bindings between RPA and its partners in DNA resection.  相似文献   

10.
The initial high affinity binding of single-stranded DNA (ssDNA) by replication protein A (RPA) is involved in the tandem domains in the central region of the RPA70 subunit (RPA70AB). However, it was not clear whether the two domains, RPA70A and RPA70B, bind DNA simultaneously or sequentially. Here, using primarily heteronuclear NMR complemented by fluorescence spectroscopy, we have analyzed the binding characteristics of the individual RPA70A and RPA70B domains and compared them with the intact RPA70AB. NMR chemical shift comparisons confirmed that RPA70A and RPA70B tumble independently in solution in the absence of ssDNA. NMR chemical shift perturbations showed that all ssDNA oligomers bind to the same sites as observed in the x-ray crystal structure of RPA70AB complexed to d(C)8. Titrations using a variety of 5'-mer ssDNA oligomers showed that RPA70A has a 5-10-fold higher affinity for ssDNA than RPA70B. Detailed analysis of ssDNA binding to RPA70A revealed that all DNA sequences interact in a similar mode. Fluorescence binding measurements with a variety of 8-10'-mer DNA sequences showed that RPA70AB interacts with DNA with approximately 100-fold higher affinity than the isolated domains. Calculation of the theoretical "linkage effect" from the structure of RPA70AB suggests that the high overall affinity for ssDNA is a byproduct of the covalent attachment of the two domains via a short flexible tether, which increases the effective local concentration. Taken together, our data are consistent with a sequential model of DNA binding by RPA according to which RPA70A binds the majority of DNA first and subsequent loading of RPA70B domain is facilitated by the linkage effect.  相似文献   

11.
In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding. This study uses a depletion/replacement strategy in human cells to reveal the contributions of each domain to RPA cellular functions. Mutations that substantially decrease ssDNA binding activity do not necessarily disrupt cellular RPA function. Conversely, mutations that only slightly affect ssDNA binding can dramatically affect cellular function. The N terminus of RPA1 is not necessary for DNA replication in the cell; however, this region is important for the cellular response to DNA damage. Highly conserved aromatic residues in the high affinity ssDNA-binding domains are essential for DNA repair and cell cycle progression. Our findings suggest that as long as a threshold of RPA-ssDNA binding activity is met, DNA replication can occur and that an RPA activity separate from ssDNA binding is essential for function in DNA repair.  相似文献   

12.
Park CJ  Lee JH  Choi BS 《Nucleic acids research》2005,33(13):4172-4181
Replication protein A (RPA) is a three-subunit complex with multiple roles in DNA metabolism. DNA-binding domain A in the large subunit of human RPA (hRPA70A) binds to single-stranded DNA (ssDNA) and is responsible for the species-specific RPA–T antigen (T-ag) interaction required for Simian virus 40 replication. Although Saccharomyces cerevisiae RPA70A (scRPA70A) shares high sequence homology with hRPA70A, the two are not functionally equivalent. To elucidate the similarities and differences between these two homologous proteins, we determined the solution structure of scRPA70A, which closely resembled the structure of hRPA70A. The structure of ssDNA-bound scRPA70A, as simulated by residual dipolar coupling-based homology modeling, suggested that the positioning of the ssDNA is the same for scRPA70A and hRPA70A, although the conformational changes that occur in the two proteins upon ssDNA binding are not identical. NMR titrations of hRPA70A with T-ag showed that the T-ag binding surface is separate from the ssDNA-binding region and is more neutral than the corresponding part of scRPA70A. These differences might account for the species-specific nature of the hRPA70A–T-ag interaction. Our results provide insight into how these two homologous RPA proteins can exhibit functional differences, but still both retain their ability to bind ssDNA.  相似文献   

13.
Although structures of single-stranded (ss)DNA-binding proteins (SSBs) have been reported with and without ssDNA, the mechanism of ssDNA binding in eukarya remains speculative. Here we report a 2.5 Angstroms structure of the ssDNA-binding domain of human replication protein A (RPA) (eukaryotic SSB), for which we previously reported a structure in complex with ssDNA. A comparison of free and bound forms of RPA revealed that ssDNA binding is associated with a major reorientation between, and significant conformational changes within, the structural modules--OB-folds--which comprise the DNA-binding domain. Two OB-folds, whose tandem orientation was stabilized by the presence of DNA, adopted multiple orientations in its absence. Within the OB-folds, extended loops implicated in DNA binding significantly changed conformation in the absence of DNA. Analysis of intermolecular contacts suggested the possibility that other RPA molecules and/or other proteins could compete with DNA for the same binding site. Using this mechanism, protein-protein interactions can regulate, and/or be regulated by DNA binding. Combined with available biochemical data, this structure also suggested a dynamic model for the DNA-binding mechanism.  相似文献   

14.
Walther AP  Gomes XV  Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3963-3973
Human replication protein A (RPA) is a multiple subunit single-stranded DNA-binding protein that is required for multiple processes in cellular DNA metabolism. This complex, composed of subunits of 70, 32, and 14 kDa, binds to single-stranded DNA (ssDNA) with high affinity and participates in multiple protein-protein interactions. The 70-kDa subunit of RPA is known to be composed of multiple domains: an N-terminal domain that participates in protein interactions, a central DNA-binding domain (composed of two copies of a ssDNA-binding motif), a putative (C-X2-C-X13-C-X2-C) zinc finger, and a C-terminal intersubunit interaction domain. A series of mutant forms of RPA were used to elucidate the roles of these domains in RPA function. The central DNA-binding domain was necessary and sufficient for interactions with ssDNA; however, adjacent sequences, including the zinc-finger domain and part of the N-terminal domain, were needed for optimal ssDNA-binding activity. The role of aromatic residues in RPA-DNA interactions was examined. Mutation of any one of the four aromatic residues shown to interact with ssDNA had minimal effects on RPA activity, indicating that individually these residues are not critical for RPA activity. Mutation of the zinc-finger domain altered the structure of the RPA complex, reduced ssDNA-binding activity, and eliminated activity in DNA replication.  相似文献   

15.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

16.
Recent years have witnessed tremendous progress in our structural and biophysical understanding of how replication protein A (RPA), a major nuclear ssDNA-binding protein (SSB), binds DNA. The four ssDNA-binding domains of RPA have the characteristic OB (oligonucleotide/oligosaccharide-binding) fold and contact DNA with specific polarity via a hierarchy-driven dynamic pathway. A growing mass of data suggest that many aspects of the ssDNA binding mechanism are conserved among SSBs of different origin. However, this conservation is not restricted to the SSB class. The concepts of ssDNA binding by the OB-fold, first derived from the RPA structure, have been successfully applied to the functional characterization of the BRCA2 (breast cancer susceptibility gene 2) protein. The BRCA2 structure, in its turn, has helped to better understand RPA function.  相似文献   

17.
Replication protein A (RPA) consisting of three subunits is a eukaryotic single-stranded DNA (ssDNA)-binding protein involved in DNA replication, repair and recombination. We report here the identification and characterization of a RPA large subunit (CpRPA1) gene from the apicomplexan Cryptosporidium parvum. The CpRPA1 gene encodes a 53.9-kDa peptide that is remarkably smaller than that from other eukaryotes (i.e. approximately 70 kDa) and is actively expressed in both free sporozoites and parasite intracellular stages. This short-type RPA large subunit has also been characterized from one other protist, Crithidia fasciculata. Three distinct domains have been identified in the RPA large subunit of humans and yeasts: an N-terminal protein interaction domain, a central ssDNA-binding area, and a C-terminal subunit-interacting region. Sequence analysis reveals that the short-type RPA large subunit differs from that of other eukaryotes in that only the domains required for ssDNA binding and heterotrimer formation are present. It lacks the N-terminal domain necessary for the binding of proteins mainly involved in DNA repair and recombination. This major structural difference suggests that the mechanism for DNA repair and recombination in some protists differs from that of other eukaryotes. Since replication proteins play an essential role in the cell cycle, the fact that RPA proteins of C. parvum differ from those of its host suggests that RPA be explored as a potential chemotherapeutic target for controlling cryptosporidiosis and/or diseases caused by other apicomplexans.  相似文献   

18.
Cdc13, the telomere end-binding protein from Saccharomyces cerevisiae, is a multidomain protein that specifically binds telomeric single-stranded DNA (ssDNA) with exquisitely high affinity to coordinate telomere maintenance. Recent structural and genetic data have led to the proposal that Cdc13 is the paralog of RPA70 within a telomere-specific RPA complex. Our understanding of Cdc13 structure and biochemistry has been largely restricted to studies of individual domains, precluding analysis of how each domain influences the activity of the others. To better facilitate a comparison to RPA70, we evaluated the ssDNA binding of full-length S. cerevisiae Cdc13 to its minimal substrate, Tel11. We found that, unlike RPA70 and the other known telomere end-binding proteins, the core Cdc13 ssDNA-binding activity is wholly contained within a single tight-binding oligosaccharide/oligonucleotide/oligopeptide binding (OB)-fold. Because two OB-folds are implicated in dimerization, we also evaluated the relationship between dimerization and ssDNA-binding activity and found that the two activities are independent. We also find that Cdc13 binding exhibits positive cooperativity that is independent of dimerization. This study reveals that, while Cdc13 and RPA70 share similar domain topologies, the corresponding domains have evolved different and specialized functions.  相似文献   

19.
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential for DNA replication, and plays important roles in DNA repair and DNA recombination. Rad52 and RPA, along with other members of the Rad52 epistasis group of genes, repair double-stranded DNA breaks (DSBs). Two repair pathways involve RPA and Rad52, homologous recombination and single-strand annealing. Two binding sites for Rad52 have been identified on RPA. They include the previously identified C-terminal domain (CTD) of RPA32 (residues 224-271) and the newly identified domain containing residues 169-326 of RPA70. A region on Rad52, which includes residues 218-303, binds RPA70 as well as RPA32. The N-terminal region of RPA32 does not appear to play a role in the formation of the RPA:Rad52 complex. It appears that the RPA32CTD can substitute for RPA70 in binding Rad52. Sequence homology between RPA32 and RPA70 was used to identify a putative Rad52-binding site on RPA70 that is located near DNA-binding domains A and B. Rad52 binding to RPA increases ssDNA affinity significantly. Mutations in DBD-D on RPA32 show that this domain is primarily responsible for the ssDNA binding enhancement. RPA binding to Rad52 inhibits the higher-order self-association of Rad52 rings. Implications for these results for the "hand-off" mechanism between protein-protein partners, including Rad51, in homologous recombination and single-strand annealing are discussed.  相似文献   

20.
Replication protein A (RPA) is the ubiquitous, eukaryotic single-stranded DNA (ssDNA) binding protein and is essential for DNA replication, recombination, and repair. Here, crystal structures of the soluble RPA heterodimer, composed of the RPA14 and RPA32 subunits, have been determined for the full-length protein in multiple crystal forms. In all crystals, the electron density for the N-terminal (residues 1-42) and C-terminal (residues 175-270) regions of RPA32 is weak and of poor quality indicating that these regions are disordered and/or assume multiple positions in the crystals. Hence, the RPA32 N terminus, that is hyperphosphorylated in a cell-cycle-dependent manner and in response to DNA damaging agents, appears to be inherently disordered in the unphosphorylated state. The C-terminal, winged helix-loop-helix, protein-protein interaction domain adopts several conformations perhaps to facilitate its interaction with various proteins. Although the ordered regions of RPA14/32 resemble the previously solved protease-resistant core crystal structure, the quaternary structures between the heterodimers are quite different. Thus, the four-helix bundle quaternary assembly noted in the original core structure is unlikely to be related to the quaternary structure of the intact heterotrimer. An organic ligand binding site between subunits RPA14 and RPA32 was identified to bind dioxane. Comparison of the ssDNA binding surfaces of RPA70 with RPA14/32 showed that the lower affinity of RPA14/32 can be attributed to a shallower binding crevice with reduced positive electrostatic charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号