首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The colorless flagellate Astasia longa shows a pronounced negative gravitaxis. The calcium fluorescence indicator Calcium Crimson was used to detect changes of the intracellular calcium concentration during gravitactical orientation. Astasia shows an increase of the fluorescence after a lag phase of about 10 s, a maximum after about 30 s and a decrease to the basic level within 60 s during gravitactic reorientation. The observed change in fluorescence corresponds to an almost doubling of the initial free calcium concentration. The influence of inhibitors, known to impair gravitaxis, on the calcium concentration of Astasia longa was tested. Addition of caffeine, an inhibitor of phosphodiesterase, increases, while addition of gadolinium, an inhibitor of mechanosensitive ion channels decreases the fluorescence signal. While gravitactic stimulation of caffeine-treated cells resulted in a kinetics of fluorescence intensity changes comparable to control cells the addition of gadolinium inhibited any calcium concentration change. Dynamic fluorescence imaging was used during a sounding rocket experiment (MAXUS 3 campaign). Different accelerations interrupted by microgravity intervals were applied to Astasia cells. The cells show an increase in the calcium signal upon acceleration and a decrease during the microgravity state. The results strongly reemphasize the working model of gravitaxis which is based on the activation of mechano-sensitive ion channels as one of the primary events in signal perception.  相似文献   

4.
Summary. The effects of the calcium sequester EGTA on gravitactic orientation and membrane potential changes in the unicellular flagellate Euglena gracilis were investigated during a recent parabolic-flight experiment aboard of an Airbus A300. In the course of a flight parabola, an acceleration profile is achieved which yields subsequently about 20 s of hypergravity (1.8 g n), about 20 s of microgravity, and another 20 s of hypergravity phases. The movement behavior of the cells was investigated with real-time, computer-based image analysis. Membrane potential changes were detected with a newly developed photometer which measures absorption changes of the membrane potential-sensitive probe oxonol VI. To test whether the data obtained by the oxonol device were reliable, the signal of non-oxonol-labelled cells was recorded. In these samples, no absorption shift was detected. Changes of the oxonol VI signals indicate that the cells depolarize during acceleration (very obvious in the step from microgravity to hypergravity) and slightly hyperpolarize in microgravity, which can possibly be explained with the action of Ca-ATPases. These signals (mainly the depolarization) were significantly suppressed in the presence of EGTA (5 mM). Gravitaxis in parallel was also inhibited after addition of EGTA. Initially, negative gravitaxis was inverted into a positive one. Later, gravitaxis was almost undetectable. Correspondence and reprints: Department of Plant Ecophysiology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Federal Republic of Germany.  相似文献   

5.
利用神舟8号飞船的SIMBOX发射机会,对真实微重力影响裸藻光合作用活性进行了研究.我们发现,微重力降低了光合活性(Fv/Fm),提高了细胞内叶绿素a和胡萝卜素含量.快速叶绿素荧光动力学研究显示微重力降低了叶绿素荧光强度,但快速叶绿素荧光动力学曲线的形状(O-J-I-P)没有改变.在微重力处理下裸藻的最大光化学效率(φPo)、用于电子传递的量子产额(φEo)和光合作用性能指数(PIABS and PICS)都明显降低,但单位反应中心吸收的光能(ABS/RC)和单位反应中心耗散的能量(DIo/RC)都明显升高.77K低温荧光光谱实现微重力改变了能量在PSⅠ和PSⅡ之间的分配并出现了红移现象.这些结果表明真实微重力降低光合作用的活性有可能通过两个途径,即抑制裸藻抑制光合电子传递中PSⅡ的受体端和改变PSⅠ的结构从而引起流向PSⅠ的能量传递减少.  相似文献   

6.
7.
8.
The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (EC 2.5.1.19), the target of the herbicide glyphosate [N-(phosphonomethyl)glycine], exists in two molecular forms in Euglena gracilis. One form has previously been characterized as a monofunctional 59 kDa protein. The other form constitutes a single domain of the multifunctional 165 kDa arom protein. The two enzyme forms are inversely regulated at the protein and mRNA levels during light-induced chloroplast development, as demonstrated by the determination of their enzyme activities after non-denaturing polyacrylamide gel electrophoresis and Northern hybridization analysis with a Saccharomyces cerevisiae ARO1 gene probe. The arom protein and its mRNA predominate in dark-grown cells, and the levels of both decline upon illumination. In contrast, the monofunctional EPSP synthase and its mRNA are induced by light, the increase in mRNA abundance preceding accumulation of the protein. The two enzymes are localized in different subcellular compartments, as demonstrated by comparing total protein patterns with those of isolated organelles. Glyphosate-adapted wild-type cells and glyphosate-tolerant cells of a plastid-free mutant of E. gracilis, W10BSmL, were used for organelle isolation and protein extraction, as these cell lines overproduce EPSP synthase and the arom protein, respectively. Evidence was obtained for the cytosolic localization of the arom protein and the plastid compartmentalization of the monofunctional EPSP synthase. These conclusions are further supported by the observation that EPSP synthase precursor, produced by in vitro translation of the hybrid-selected mRNA, was efficiently taken up and processed to mature size by isolated chloroplasts from photoautotrophic wild-type E. gracilis cells, while the in vitro-synthesized arom protein was not sequestered by isolated Euglena plastids.Dedicated to Prof. Dr. A. Trebst on the occasion of his 65th birthday  相似文献   

9.
Photoautotrophic cultivation of Euglena gracilis results in cells with high α-tocopherol content but the final cell concentration is usually very low due to the difficulty of supplying light efficiently to the photobioreactor. On the other hand, Euglena grows heterotrophically to high cell concentrations, using various organic carbon sources, but the α-tocopherol contents of heterotrophically grown cells are usually very low. Sequential heterotrophic/photoautotrophic cultivation, by which cells are grown heterotrophically to high cell concentrations and then transferred to photoautotrophic culture for accumulation of α-tocopherol was therefore investigated for efficient α-tocopherol production. In batch culture, using glucose as the organic carbon source, the cellular α-tocopherol content increased from 120 μg g−1 at the end of heterotrophic phase to more than 400 μg g−1 at the end of the photoautotrophic phase. By using ethanol as the organic carbon source during the heterotrophic phase, adding corn steep liquor as a nitrogen source and optimizing light supply during the photoautotrophic phase, the α-tocopherol content of the cells at the end of the photoautotrophic phase increased to 1700 μg g−1. A system consisting of a mini-jar fermentor (for the heterotrophic phase) and an internally illuminated photobioreactor (for the photoautotrophic phase) was then constructed for continuous sequential heterotrophic/photoautotrophic cultivation. The cells were continuously cultivated heterotrophically in the mini-jar fermentor and the effluent was continuously passed through the photobioreactor for α-tocopherol accumulation. In this way, it was possible to produce 7 g l−1 cells containing about 1100 μg α-tocopherol per g-cell continuously for more than 420 h. The continuous process resulted in α-tocopherol productivity of 100 μg l−1 h−1 which is about 9.5 and 4.6 times higher than those obtained in batch photoautotrophic culture and batch heterotrophic cultures, respectively.  相似文献   

10.
The unicellular freshwater flagellate Euglena gracilis regulates its position in the water column by means of phototactic and gravitactic behavior. Recent experiments have revealed that the cells switch between negative and positive gravitaxis depending upon environmental stimuli such as solar radiation. In this study, the effect of increased salinity on gravitaxis in Euglena gracilis was investigated. In some experiments it was found that salt concentrations up to 5 gL-1 (in some experiments 10 gL-1) increased the motility, velocity and precision of negative gravitactic orientation. Higher salt concentrations decreased all these parameters. At concentrations of about 15 gL-1, cells which did not become immobile, switched from negative to positive gravitaxis. Positive gravitaxis persisted for several hours or even days when the cells were transferred back to standard culture medium. Most of the cells in cultures exposed to salt concentrations above 20 gL-1 lost their motility (partial formation of palmella stages) but recovered when transferred back to standard medium or de-ionised water. Post recovery, the cells showed pronounced positive gravitaxis. Additional investigations on the pigmentation, revealed that the cells showed a complete loss of a carotenoid shoulder in the spectrum, which reappeared when the cells were brought back to standard medium.  相似文献   

11.
Euglena gracilis, a unicellular photosynthetic flagellate, uses light and gravity as environmental hints to reach and stay in regions optimal for growth and reproduction. The current model of gravitaxis (the orientation with respect to the earth's gravitational field) is based on the specific density difference between cell body and medium. The resulting sedimentation of the cell body applies a force to the lower membrane. This force activates mechano-sensitive ion channels. The resulting ion flux changes the membrane potential, which in turn triggers reorientational movements of the trailing flagellum. One possibility for recording the predicted membrane potential changes during reorientation is the use of potential-sensitive dyes, such as Oxonol VI. The absorption changes of the dye indicating potential changes were recorded with a custom-made photometer, which allows a high precision measurement with a high temporal resolution. After a gravitactic stimulation, a short period of hyperpolarization was detected, followed by a massive depolarization of the cell. The membrane potential returned to initial values after a period of approximately 200 s. Parallel measurements of the precision of orientation and the membrane potential showed a close relationship between both phenomena. The obtained results support the current model of gravitaxis of Euglena gracilis.  相似文献   

12.
通过标本考证和野外研究,证实中国文献记载的纤细蛇根草(Ophiorrhiza gracilis Kurz)实为尾瓣蛇根草(O. caudipetala Deb & Monda)错误鉴定,而后者之前仅被报道分布于印度,因此为中国新记录。尾瓣蛇根草具有明显不等大的对生叶片, 花冠裂片背部具长0.6~1 mm的角状突起,易与中国蛇根草属其它种类区分。  相似文献   

13.
14.
The study evaluated the effect of dietary doses of Euglena viridis on the immune response and disease resistance of Labeo rohita fingerlings against infection with the bacterial pathogen Aeromonas hydrophila. L. rohita fingerlings were fed with diet containing 0 (Control), 0.1 g, 0.5 g, 1.0 g Euglena powder kg−1 dry diet for 90 days. Biochemical (serum total protein, albumin, globulin, albumin:globulin ratio), haematological (WBC, RBC, haemoglobin content) and immunological (superoxide anion production, lysozyme, serum bactericidal activity) parameters of fish were examined after 30, 60 and 90 days of feeding. Fish were challenged with A. hydrophila 90 days post-feeding and mortalities were recorded over 10 days post-infection. The results demonstrate that fish fed with Euglena showed increased levels of superoxide anion production, lysozyme, serum bactericidal activity, serum protein and albumin (P < 0.05) compared with the control group. Following challenge with A. hydrophila less survivability was observed in the control group (56.65%) than the group fed the experimental diets. The group fed 0.5 g Euglena kg−1 dry diet showed the highest percentage survival (75%). These results indicate that Euglena stimulates the immunity and makes L. rohita more resistant to A. hydrophila infection.  相似文献   

15.
16.
Summary Three distinct chloroplast (cp) DNA fragments from Petunia hybrida, which promote autonomous replication in yeast, were mapped on the chloroplast genome. Sequence analysis revealed that these fragments (called ARS A, B and C) have a high AT content, numerous short direct and inverted repeats and at least one yeast ARS consensus sequence 5A/TTTTATPuTTTA/T, essential for yeast ARS activity. ARS A and B also showed the presence of (semi-)conserved sequences, present in all Chlamydomanas reinhardii cpDNA regions that promote autonomous replication in yeast (ARS sequences) or in C. reinhardii (ARC sequences). A 431 bp BamHI/EcoRI fragment, close to one of the inverted repeats and adjacent to the ARS B subfragment contains an AT-rich stretch of about 100 nucleotides that show extensive homology with an Euglena gracilis cpDNA fragment which is part of the replication origin region. This conserved region contains direct and inverted repeats, stem-and-loop structures can be folded and it contains an ARS consensus sequence. In the near vicinity a GC-rich block is present. All these features make this cpDNA region the best candidate for being the origin of replication of P. hybrida cpDNA.  相似文献   

17.
18.
The possible protective effect of a suberin extract from Quercus suber cork on acridine orange (AO)-, ofloxacin- and UV radiation-induced mutagenicity (bleaching activity) in Euglena gracilis was examined. To our knowledge, the present results are the first attempt to analyse suberin in relation to mutagenicity of some chemicals. Suberin exhibits a significant dose-dependent protective effect against AO-induced mutagenicity and the concentration of 500 μg/ml completely eliminates the Euglena-bleaching activity of AO. The mutagenicity of ofloxacin is also significantly reduced in the presence of suberin (125, 250 and 500 μg/ml). However, the moderate protective effect of suberin on UV radiation-induced mutagenicity was observed only at concentrations 500 and 1000 μg/ml. Our data shows that suberin extract from Q. suber cork possess antimutagenic properties and can be included in the group of natural antimutagens acting in a desmutagenic manner.  相似文献   

19.
The isolation and characterization of 1-O-methyl-2-demethylphytylplastoquinol from photoheterotrophic cells of Euglena gracilis is described.  相似文献   

20.
An anhydrous type of paramylon, the micro-sized granular storage carbohydrate (β-1,3-glucan) of Euglena, was transformed from a spheroidal to a doughnut-like shape by acetylation. Fourier transform infrared spectroscopic measurements suggested that the doughnut formation is due to removal of accessible regions of paramylon particles by acetylation of glucans. A time-course observation of the paramylon granules during acetylation by using field emission scanning electron microscopy revealed that the doughnut-making process begins with the removal of an outer membrane of the granule and that the central region of the granules is preferentially removed with the survival of a thick rim part to give the doughnut-like particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号