首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The steady-state kinetics of human erythrocyte glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49) dimers were studied by initial rate measurement. These experiments gave intersecting double-reciprocal plots suggesting a ternary complex mechanism with a Km for NADP and glucose 6-phosphate of 11 microM and 43 microM, respectively. These studies were combined with rate measurements in the presence of one product (NADPH), dead-end inhibitors, as well as alternative substrates. The inhibition by NADPH was found to be competitive with respect to both substrates. Alternate substrates experiments gave linear double-reciprocal plots over a wide range of substrate concentrations. The results suggest that the dimeric enzyme follows either a random or a Theorell-Chance mechanism.  相似文献   

4.
5.
Sigmoid kinetics of human erythrocyte glucose-6-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
Several disagreements and inconsistencies have appeared regarding whether human erythrocyte glucose-6-phosphate dehydrogenase exhibits sigmoid or classical kinetics with respect to NADP+ binding. The latest report is that the purified enzyme exhibits classical kinetics while the intracellular enzyme exhibits sigmoid kinetics (H. N. Kirkman, and G. F. Gaetani (1986) J. Biol. Chem. 261, 4033-4038). The various investigations were carried out at fixed pH, ionic strength, and temperature. The steady-state kinetics of crude and purified erythrocyte glucose-6-phosphate dehydrogenase are reported here at various temperatures, ionic strengths, and pH values and as a function of glucose 6-phosphate concentration. Sigmoid kinetics were observed for both purified and crude enzyme samples at high pH, temperature, ionic strength, and concentration of glucose 6-phosphate with Hill coefficients varying between 1.40 and 1.90. In contrast, at low pH, temperature, and ionic strength, the crude enzyme samples exhibit sigmoid kinetics while the purified samples exhibit classical kinetics despite the high concentration of glucose 6-phosphate. High concentrations of glucose 6-phosphate and factors favoring the enzyme in the dimeric form are necessary conditions for the observation of sigmoid kinetics in human erythrocyte glucose-6-phosphate dehydrogenase. These factors are high pH, ionic strength, and temperature. The observed sigmoid kinetics in this enzyme is explained as arising from tetramer-dimer transitions.  相似文献   

6.
7.
8.
Incubation of adenylosuccinate synthetase from Escherichia coli with low concentrations of pyridoxal 5'-phosphate (PLP) resulted in a rapid loss of activity (92%), concomitant with the formation of a Schiff base. The inactivation of the enzyme by PLP is apparently first order with respect to PLP. The pseudo-first order rate constant, Kapp, showed a hyperbolic dependence on the concentration of PLP, indicating that a kinetically significant PLP.enzyme intermediate is formed during the inactivation process. Stoichiometry and peptide isolation studies showed that 2 lysine residues were modified during reaction of the enzyme with PLP. The three substrates of adenylosuccinate synthetase (GTP, IMP, and aspartate) showed different effects in their ability to protect the enzyme against PLP inactivation. Complete protection of the enzyme against inactivation can be observed only in the presence of high concentrations of GTP. One lysine residue was protected under these conditions. In contrast to GTP, addition of the other two substrates either alone or together to reaction mixtures did not render protection. Peptide mapping by digesting the enzyme with trypsin revealed that the lysine shielded by GTP is Lys140. Replacing the Lys140 with Ile140 by site-directed mutagenesis resulted in total loss of the activity. These results suggest that Lys140 may play an important role in enzymatic activity.  相似文献   

9.
10.
11.
S A Adediran 《Biochimie》1991,73(9):1211-1218
The steady-state kinetics of normal human erythrocyte glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49) dimers were studied as a function of pH and temperature. Inhibition studies using glucosamine 6-phosphate, NADPH and p-hydroxymercuribenzoate (P-OHMB) were also carried out at pH 8.0. The existence of two binding sites on the enzyme with a transition from low to high affinity for NADP+ when NADP+ concentration is increased is indicated by the nonlinear Lineweaver-Burk plots and sigmoid kinetic patterns. NADPH inhibition was found to be competitive with respect to NADP+ and non-competitive with respect to glucose-6-phosphate. Logarithmic plot of Vmax against pH and inactivation by P-OHMB indicate the participation in the reaction mechanism of imidazolium group of histidine and sulhydryl groups. The initial velocity and product inhibition data gave results which are consistent with the dimeric enzyme following an ordered sequential mechanism. A possible random mechanism is ruled out by the inhibition results of glucosamine 6-phosphate.  相似文献   

12.
13.
14.
15.
An NAD+ dependent succinic semialdehyde dehydrogenase from bovine brain was inactivated by pyridoxal-5'- phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through formation of a Schiff's base with amino groups of the enzyme. After NaBH(4) reduction of the pyridoxal-5'-phosphate inactivated enzyme, it was observed that 3.8 mol phosphopyridoxyl residues were incorporated/enzyme tetramer. The coenzyme, NAD+, protected the enzyme against inactivation by pyridoxal-5'-phosphate. The absorption spectrum of the reduced and dialyzed pyridoxal-5'-phosphate-inactivated enzyme showed a characteristic peak at 325 nm, which was absent in the spectrum of the native enzyme. The fluorescence spectrum of the pyridoxyl enzyme differs completely from that of the native enzyme. After tryptic digestion of the enzyme modified with pyridoxal-5'-phosphate followed by [3H]NaBH4 reduction, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. The sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other mammalian succinic semialdehyde dehydrogenase brain species including human. It is suggested that the catalytic function of succinic semialdehyde dehydrogenase is modulated by binding of pyridoxal-5'-phosphate to specific Lys(347) residue at or near the coenzyme-binding site of the protein.  相似文献   

16.
17.
Inhibition of glutamic dehydrogenase by pyridoxal 5'-phosphate   总被引:12,自引:0,他引:12  
  相似文献   

18.
Pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) inhibits glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides competitively with respect to glucose 6-phosphate and noncompetitively with respect to NAD+ or NADP+, with Ki = 40 microM in the NADP-linked and 34 microM in the NAD-linked reaction. Incubation of glucose-6-phosphate dehydrogenase with [3H]PLP-AMP followed by borohydride reduction shows that incorporation of 0.85 mol of PLP-AMP per mol of enzyme subunit is required for complete inactivation. Both glucose 6-phosphate and NAD+ protect against this covalent modification. The proteolysis of the modified enzyme and isolation and sequencing of the labeled peptides revealed that Lys-21 and Lys-343 are the sites of PLP-AMP interaction and that glucose 6-phosphate and NAD+ protect both lysyl residues against modification. Pyridoxal 5'-phosphate (PLP) also modifies Lys-21 and probably Lys-343. Lys-21 is part of a highly conserved region that is present in all glucose-6-phosphate dehydrogenases that have been sequenced. Lys-343 corresponds to an arginyl residue in other glucose-6-phosphate dehydrogenases and is in a region that is less homologous with those enzymes. PLP-AMP and PLP are believed to interact with L. mesenteroides glucose-6-phosphate dehydrogenase at the glucose 6-phosphate binding site. Simultaneous binding of NAD+ induces conformational changes (Kurlandsky, S. B., Hilburger, A. C., and Levy, H. R. (1988) Arch. Biochem. Biophys. 264, 93-102) that are postulated to interfere with Schiff's-base formation with PLP or PLP-AMP. One or both of the lysyl residues covalently modified by PLP or PLP-AMP may be located in regions of the enzyme undergoing the NAD(+)-induced conformational changes.  相似文献   

19.
20.
A series of peptide analogs of luteinizing hormone releasing hormone (LH-RH), altered at position 6 and 10, was synthesized and evaluated in vivo for the ability to induce ovulation in the diestrous rat and in vitro for ability to release pituitary luteinizing hormone and follicle stimulating hormone. All the analogs with D-amino acid substitutions at position 6, even those with large bulky side chain, exhibited an amazingly high potency compared with the parent hormone, LH-RH. On the basis of the biological activities, structure-activity relationships in the central part of this molecule were discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号