首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Baric  A.  Kuspilic  G.  Matijevic  S. 《Hydrobiologia》2002,(1):151-159
Nutrient benthic fluxes, as well as sediment phosphorus concentration at the open sea and coastal water stations of the Central and South Adriatic were studied during 1997–98. The fluxes were in the ranges: 0.16–2.67 mmol m–2 d–1 (silicate); –0.031–0.164 mmol m–2 d–1 (phosphate); –0.51–2.03 mmol m–2 d–1 (ammonia); and –1.32–1.62 mmol m–2 d–1 (nitrate + nitrite). Silicate flux showed a gradient from the coastal area to the open sea. Ammonia was the main nitrogen species in the flux at the estuary and bay stations, while the sum of nitrate and nitrite was predominant at the open sea stations. Relationships between phosphate and ammonia fluxes (r = 0.699, p<0.01) as well as phosphate and silicate (r = 0.529, p<0.01) were established.  相似文献   

2.
The uptake of ammonium, nitrate and phosphate by laboratory-grown young sporophytes of Laminaria abyssalis was measured in a perturbed system (batch mode) at 18 °C and 35 ± 5 µE m–2 s–1 photon flux density. Uptake of all appeared to follow saturation-type nutrient uptake kinetics. The NO inf3 sup– (K s = 14.0 µM, V max = 5.0 µmol h–1 g–1 dry wt) and NH inf4 sup+ (K s = 4.6 µM, V max= 2.0 µmol h–1 g–1 dry wt) were taken up simultaneously, although NH inf4 sup+ was taken up more rapidly. Values of K 3 and V max for phosphate were, respectively, 2.21 µM and 0.83 µmol h–1 g–1 dry wt. Nitrate and phosphate were both consumed in similar rates (V max /Ks 0.37) at low concentrations. NH inf4 sup+ , thus, might be a more efficient form of N fertilizer if artificial enrichment of seawater is used.  相似文献   

3.
The effect of nutrient pulse concentration and frequency onGracilaria chilensis Bird, McLachlanet O Oliveira growth and epiphyte abundace was investigated for plants grown in an indoor culture facility. The frequency of nutrient pulses (which ranged from 1 pulse to 4 pulses per 14 days) had a strong influence on plant growth, while pulse concentration (from 72 to 143 µM as ammonium) had a lesser influence. Growth became a function of total N flux only when plants received nutrient pulses at least twice per 14 days. Both pulse frequency and pulse concentration affected the abundance of epiphytic algae found attached toGracilaria thalli, but pulse frequency was the more significant of the two factors. Their effects could be combined into the single factor, total N flux. Both reasonableG. chilensis growth and low levels of epiphytes were achieved under these conditions (20 °C, 25 µ mol photon m–2 s–1 PAR) if ammonium was pulsed at relatively high concentrations (up to 150 µM) once every 7 days into otherwise nitrogen-depleted seawater.  相似文献   

4.
AxenicTrentepohlia odorata was cultured at three different NH4Cl levels (3.5 × 10–2, 3.5 × 10–3, 3.5 × 10–4 M) and three different light intensities (48, 76, 122 µmol m–2 s–1). Chloride had no effect on growth over this range of concentration. High light intensity and high NH4Cl concentration enhanced the specific growth rate. The carotenoid content increased under a combination of high light intensity and low N concentration. WhenD. bardawil was exposed to the same combination of growth conditions, there was an increase in its carotenoid content. The light saturation and the light inhibition constants (K s andK i, respectively) for growth, and the saturation constant (K m) for NH4Cl were determined. TheK s andK i values were higher inT. odorata (66.7 and> 122 mol m–2 s–1, respectively) than inD. bardawil (5.1 and 14.7 µmol m–2 s–1, respectively). TheK m value determined at 122 µmol m–2 s–1, however, was lower inT. odorata (0.048 µM) than inD. bardawil (0.062 µM).Author for correspondence  相似文献   

5.
Four physiologically and phenotypically diversified tobacco (Nicotiana tabacum L. cv. Samsun) plantlet variants had been generated by cultivation on media either lacking or containing sucrose (0 and 3 %, m/v) under two different photon flux densities (PFD), 50 µmol m–2 s–1 (LL) and 200 µmol m–2 s–1 (HL). Plantlets were transferred into soil without any pre-acclimation and grown either under PFD of 200 µmol m–2 s–1 or 700 µmol m–2 s–1. Sucrose feeding in vitro resulted in reduced degree and duration of wilting after transfer. The highest readiness for ex vitro acclimation was found in 3 % HL plants, in which changes of photosynthetic apparatus and stress responses were the smallest. On the contrary, the steepest decline of Fv/Fm ratio on the first day after transplantation, doubled chlorophyll content and almost tripled D1/LHC 2 ratio after 7 d of ex vitro growth under 700 µmol m–2 s–1 characterized 0 % HL plants, which had suffered chronic photoinhibition in vitro. Remarkably high abscisic acid content at the end of in vitro cultivation and during acclimation as well as increased synthesis of both D1 and LHC 2 proteins even at the end of analyzed acclimation period were found only in 0 % LL plants. Increase of D1/LHC 2 ratio and chlorophyll contents demonstrate that in vitro developed leaves of all plant variants are able to acclimate to new environment. The most surprising result in the whole study is the drop of D1 protein synthesis in all plants on the 3rd day. Five times decline of photoprotection level of xanthophylls in plants after ex vitro transfer into the same PFD showed stress character of in vitro cultures.  相似文献   

6.
Summary Transport by an epithelium, possessing an accumulating, saturable transport system in the apical membrane as well as a finite Fick permeability to the transported solute, was considered in the steady state in the case of zerocis concentration, and in the presence of a peripheral diffusion resistance in a layer apposing thecis face of the tissue (unstirred solution or structural coating). Under suitable conditions, the combination of peripheral diffusion resistance and accumulating epithelial transport may lead to recycling of solute at thecis face of the epithelium. This causes a decrease of the effective permeability to diffusionaltrans-cis flow across the tissue. The phenomenon is discussed in terms of epidermald-glucose transport by the integument of aquatic animals with a collagenous cuticle, such as the seawater-acclimated polychaete wormNereis diversicolor. The recycling phenomenon may be of significance to other epithelia with the function of maintaining large concentration gradients of permeating substances.List of Symbols and Fixed Parameter Values C m Bulk medium solute concentration,cis face of epidermisC m=0 mol cm–3 - C i Concentration of solute at interface between cuticle and unstirred medium (mol cm–3) - C s Concentration of solute atcis face of apical epidermal membrane (mol cm–3) - C e Concentration of solute in extracellular fluid,trans-side of epidermisC e=1.0×10–6 mol cm–3 - D m Diffusion coefficient of solute in outside mediumD m=6.7×10–6 cm2 sec–1 - D c Diffusion coefficient of solute in cuticleD c=7.4×10–9 cm2 sec–1 - m Operative thickness of unstirred medium layer - c Thickness of cuticle - J Steady-state net flux of solute through cuticle or unstirred layer (flux is positive indirectioncis-trans) (mol cm–2 sec–1) - J i max Maximal influx through saturable transport system in apical membraneJ i max =2.0×10–12 mol cm–2 sec–1 - K t Transport constant, saturable systemK t=1.0×10–7 mol cm–3 - P Epithelial permeability (cm sec–1)  相似文献   

7.
Kurasová  I.  Čajánek  M.  Kalina  J.  Špunda  V. 《Photosynthetica》2000,38(4):513-519
The adaptation of barley (Hordeum vulgare L. cv. Akcent) plants to low (LI, 50 µmol m–2 s–1) and high (HI, 1000 µmol m–2 s–1) growth irradiances was studied using the simultaneous measurements of the photosynthetic oxygen evolution and chlorophyll a (Chl a) fluorescence at room temperature. If measured under ambient CO2 concentration, neither increase of the oxygen evolution rate (P) nor enhancement of non-radiative dissipation of the absorbed excitation energy within photosystem 2 (PS2) (determined as non-photochemical quenching of Chl a fluorescence, NPQ) were observed for HI plants compared with LI plants. Nevertheless, the HI plants exhibited a significantly higher proportion of QA in oxidised state (estimated from photochemical quenching of Chl a fluorescence, qP), by 49–102 % at irradiances above 200 µmol m–2 s–1 and an about 1.5 fold increase of irradiance-saturated PS2 electron transport rate (ETR) as compared to LI plants. At high CO2 concentration the degree of P stimulation was approximately three times higher for HI than for LI plants, and the irradiance-saturated P values at irradiances of 2 440 and 2 900 µmol m–2 s–1 were by 130 and 150 % higher for HI plants than for LI plants. We suggest that non-assimilatory electron transport dominates in the adaptation of the photosynthetic apparatus of barley grown at high irradiances under ambient CO2 rather than an increased NPQ or an enhancement of irradiance-saturated photosynthesis.  相似文献   

8.
Juanes  José A.  Puente  Araceli 《Hydrobiologia》1993,260(1):139-144
Vegetative reproduction is an important phenomenon in the propagation of Gelidium species, having significant implications for its ecology and commercial cultivation. This work is an experimental study of one of five sequential processes included in the vegetative propagation of Gelidium sesquipedale: the reattachment of rhizoidal filaments differentiated from apical fragments.Two different factors: light (25 µmol m–2 s–1 and long-day conditions, and 50 µmol m–2 s–1 and short-day conditions) and life history phases (female gametophytes and tetrasporophytes) were combined in a 2 × 2 factorial experiment. Reattachment of apical portions was induced in the laboratory under spray cultivation conditions and occurs mainly at the first stage of development when in contact with the substratum. Light conditions in these experiments (photoperiod + instantaneous photon flux densities) had no effect on the percentage of reattached neofilaments per fragment. Significant differences between percentages corresponding to both phases suggest, however, a probable competitive advantage of sporophytic fronds.  相似文献   

9.
Vidal  Montserrat  Morguí  Josep-Anton  Latasa  Mikel  Romero  Javier  Camp  Jordi 《Hydrobiologia》1997,350(1-3):169-178
The seasonal variability of sediment–water ammonium flux andoxygen uptake was studied in an estuarine bay (Alfacs Bay, Ebro Delta, NWMediterranean) influenced by temporal freshwater discharges. Three stationswith different organic loading were sampled. The relationships of benthicfluxes to bottom water (temperature, dissolved oxygen, ammonium, nitrateplus nitrite) and to sediment (porosity, chlorophyll a derivative pigments,organic carbon and nitrogen) variables were examined. Oxygen uptake rangedfrom 0.3 to 2.5 mmol m–2 h–1 and ammoniumrelease ranged from 6 to 230 µmol m–2 h–1.The lowest value was recorded at the station furthest from the freshwaterinputs, and the highest was at the littoral station nearest the freshwaterdischarge channels (for oxygen uptake) and at the deep station at the saltwedge front (for ammonium flux). Water temperature and the concentration ofchlorophyll a derivative pigments on the surface sediment were revealed asthe main variables to be taken into account to explain the variabilityfound. Changes in fluxes reflecting temperature changes were found at thestation furthest from the freshwater inputs, while at the other, fluxvariability was found to be related to the cycle of functioning offreshwater discharge channels. The different patterns of variability arediscussed in relation to the dynamics of the estuary and to the mainfeatures of benthic nitrogen cycling.  相似文献   

10.
Sousa-Pinto  Isabel  Lewis  Ray  Polne-Füller  Miriam 《Hydrobiologia》1996,326(1):437-443
Phosphate concentration of the growth medium was found to affect the growth rate and agar yield of a clone of Gelidium robustum grown in the laboratory. To study differences in growth we used phosphate concentrations from 0 to 200 µM. To determine the effect of phosphate on agar yield and its properties we used concentrations from 0 to 20 µM. Growth rates generally increased with increasing phosphate concentration, with the highest growth rate (21% d–1) obtained at 150 µM. Agar yield as percentage of fresh weight was highest (10%) in the algae grown with low phosphate concentrations, but agar yield as percentage of dry weight was highest(43%) at 20 µM of phosphate. Gel strength increased with phosphate concentration with a maximum of 160 g m–2 for 0.75% gels for the cultures at 20 µM. Melting and gelling temperatures of the gels were also affected by phosphate concentration of the growth medium. Starch yield was highest in algae grown in low phosphate concentrations.  相似文献   

11.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

12.
Thiéry  Alain  Puente  Ludovic 《Hydrobiologia》2002,486(1):191-200
Physical and chemical variables, anostracan populations (Artemia parthenogenetica and Branchinella spinosa) and other biota were studied during 1996–1997 in a Camargue saltern (max. depth 1 m). The taxonomic composition and density of macroinvertebrates were investigated twice monthly, based on benthic substrate and water column samples. Fauna was composed of three groups in terms of numerical importance. The benthic macroinvertebrates were represented only by nematodes (< 50 ind. m–2 to > 500 ind. m–2 in November–December and May respectively). The zooplankton was dominated by crustaceans, one cladoceran, Moina salina (ranging from 670 to 2350 ind. m–2 in spring), two anostracans, Artemia parthenogenetica (< 50 ind. m–2 in autumn), and Branchinella spinosa (max. 190 ind. m–2 in December to absent in April), and two copepods, Cletocamptus retrogressus (max. density 2000 ind. m–2 in November), and Eurytemora velox (max. density 650 ind. m–2 in February–March). Insects (Chironomidae, Culicidae) were rare, with mean densities < 1 ind. m–2. The phenology of each crustacean population is discussed in relation to physical and chemical water variables. Salinity appeared to be of greatest importance regulating the population abundance.  相似文献   

13.
Fralick  Richard A.  Baldwin  H. P.  Neto  A. I.  Hehre  E. J. 《Hydrobiologia》1990,(1):479-482
Manometric studies were conducted on Pterocladia capillacea, Gelidium latifolium and Gelidium spinulosum from the Azores, Portugal to determine optimal values of temperature, light and salinity for growth. Physiological responses were considered in relation to vertical distribution patterns of these species commonly observed throughout the Azores. Optimal parameters for the growth of Pterocladia capillacea, Gelidium latifolium and G. spinulosum were 17 to 25 °C, a photon flux density between 200 and 300 µmol m–2 s–1 and salinities of 25 to 35.  相似文献   

14.
The growth yield of the PUFA-producing marine microalgaIsochrysis galbana ALII-4 grown in a light limited chemostat, was measured under a wide variety of conditions of incident irradiance (I O ) and dilution rates (D). The experiments were conducted under laboratory conditions at 20 °C under continuous light. D ranged from 0.0024 to 0.0410 h–1 at three intensities of Io (820, 1620 and 3270 µmol photon m–2 s–1) close to those found in outdoor cultures. A maximum efficiency max = 0.616 g mol photon–1 was obtained at I O = 820 µmol photon m–2 s–1 and D = 0.030 h–1 and the maximum capacity of the biomass to metabolize the light harvested was found to be 13.1 µmol photon g–1 s–1. Above this value, a significant drop in the system efficiency was observed. A new approach based in the averaged irradiance is used to assess the photon flux absorbed by the biomass.  相似文献   

15.
In situ paired light and dark-stirred benthic flux chambers were used to estimate dissolved oxygen flux across the sediment–water interface in Lake Mývatn, Iceland. Three sampling stations were selected, each station reflecting a specific sedimentary environment, benthic communities, and water depth. During this study the phytoplankton density was low. Spatial and seasonal variations of bottom DO concentration and DO flux have been observed during this study. The oxygen consumption rate at all study sites had a mean of –89 (±44) mmol m–2 d–1 while the oxygen production rate due to benthic algae had a mean of 131 (±103) mmol m–2 d–1. There was a strong correlation (r=0.91) between oxygen consumption rate and temperature. This was presumably because of the temperature influence on rates of microbial and macrobenthic processes. The mean benthic primary production rate at all study sites was 1216 (±957) mg C m–2 d–1 between June 2000 and February 2001. Annual gross benthic primary production was estimated from the gross mean daily benthic DO production (P) and Redfield's C:O2 ratio of 106:138 to be 420 g C m–2 y–1 at station HO, 250 g C m–2 y–1 at B2 and 340 g C m–2 y–1 at station 95. Thus, the mean gross benthic primary production was estimated as 1151 mg C m–2 d–1 at station HO, 685 mg C m–2 d–1 at station B2, and 932 mg C m–2 d–1 at station 95.  相似文献   

16.
The effect of methane oxidation in aerobic sediment on oxygen consumption and phosphate flux was investigated in diffusion chambers. The diffusion chambers consisted of two compartments separated by a Teflon membrane. In the upper chamber a thin sediment layer was present and the lower chamber was continuously flushed with gas. The hydrophobic membrane allowed for diffusion of gases from the lower chamber through the sediment layer toward the headspace of the upper chamber. In experiments with a methane oxidation rate of 9.8 mmol m–2 day–1, the oxygen consumption rate increased by a factor of two compared with controls without methane oxidation (8.6 vs 17.7 mmol m–2 day–1). Methane oxidation significantly decreased oxygen penetration depth (2.5–4.0 vs 1.0–2.0 mm). However, despite the shrinkage of the oxidized microlayer, no differences were found in phosphate flux across the sediment water interface. Batch experiments with standard additions of methane revealed that the growth of methanotrophic bacteria contributes to the phosphate uptake of aerobic sediment. From the batch experiments a molar ratio of carbon to phosphate of 45 mol:mol was calculated for the growth of methanotrophs. Results suggest that a decrease in chemical phosphate adsorption caused by a decrease in the oxygen penetration depth could be compensated for entirely by the growth of methanotrophic bacteria. Send offprint requests to: A.J.C. Sinke  相似文献   

17.
Sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice cover of 190 days per year. In situ, transparent and dark flux chambers were used for direct measurements of benthic fluxes of dissolved oxygen, nutrients, silica and certain metals, taking into account primary production and mineral precipitation. The range of benthic flux observed for dissolved oxygen (DO), dissolved inorganic carbon (DIC), ammonium, ortho-P, silica, calcium, and magnesium was –45.89 to 187.03, –99.32 to 50.96, –1.30 to 1.27, –0.51 to 0.39, –62.3 to 9.3, –33.82 to 16.83, and –23.93 to 7.52 mmol m–2 d–1, respectively (negative value indicating flux towards the lake bottom). Low benthic NH4 + and ortho-P fluxes were likely related to benthic algal production, and aerobic bottom water. Ortho-P fluxes could also be controlled by the dissolution/precipitation of ferrihydrite, calcite, and perhaps hydroxyapatite. The negative silica fluxes were caused by diatom frustule synthesis. Benthic calcium and magnesium fluxes could be related to algal production and dissolution/precipitation of calcium and/or Ca,Mg-carbonates. Fluxes of DO, DIC, pH and alkalinity were related to benthic biological processes. It is likely that some of the carbon precipitates as calcite at the high pH in the summer and dissolves at neutral pH in the winter. Mean of the ratio of gross benthic DIC consumption and gross benthic DO production was 0.94 ± 0.18, consistent with algal production using NH4 + as N source. During the summer weeks the water column pH remains above 10. This high pH is caused by direct and indirect utilisation of CO2, HCO3 , CO3 –2, H4SiO4 ° and H3SiO4 by primary producers. This study shows that in shallow lakes at high latitudes, where summer days are long and the primary production is mostly by diatoms, the pH is forced to very high values. The high pH could lead to a positive feedback for the Si flux, but negative feedback for the NH4 + flux.  相似文献   

18.
D. lumholtzi in Lake Samsonvale, Queensland, Australia, is a small species (max. size approx. 7 µgC) that occurs in low abundance (max. abundance 6400 m–3), with an average daily biomass of 3.32 mgC m–3. Its annual rates of carbon assimilation, production and respiration, are 166, 110, and 56 mgC m–3 y–1 respectively. Annual biomass turnover (annual production/average daily biomass) is 33 and production efficiency is 50–66%. The population may consume 1.65–2.20 mgC m–3 daily, equivalent to about 1% of the average daily standing crop of phytoplankton. Clutch size is small, 2 eggs, but represents 30–80% of a female's weight. A female may only produce 8–10 offspring in a full lifespan, nevertheless egg production may account for 56% of total production. The population shows autumn and spring peaks in abundance, and is believed to oversummer (4 months) as ephippia.  相似文献   

19.
We collected the ephemeral macrophyte Ruppia drepanensis Tin. ex Guss. from the athalassic shallow lake Fuente de Piedra (Málaga. Southern Spain). This lake, situated in an endorheic basin, shows great seasonal changes in depth and Total Dissolved Solids (TDS).Dissolved oxygen evolution studied in the laboratory at 17 different photon flux densities (PFD) showed a maximum rate of photosynthesis of 0.55 mg C g dry wt–1 h–1, a light compensation point at 86 µE m–2 s–1 and a saturation point at 333 µE m–2 s–1. A moderate photoinhibition (\ = 1.68 10–4) was found above 695 µE m–2 s–1.Estimates of pigment concentrations revealed 10 times more carotenoids than chlorophyll.The adaptation of the plants to high irradiances and to the particular features of their hypersaline environment are discussed.  相似文献   

20.
The time-dependence of Mn accumulation was confirmed in potato foliage (Solanum tuberosum. L.cv. Norland) grown in solution culture. Older leaves grown at 0.61 mM Mn had substantially higher Mn concentrations than younger leaves and stem samples. Levels of Mn in older leaves increased steadily from 4000 µg g–1 at one week to 8–10,000 µg g–1 at 6 weeks, but were relatively constant in the emerging leaves. Even foliage grown at low Mn levels (0.01 mM Mn) had 4 fold gradients in Mn concentration from younger (40 µg g–1) to older leaves (180 µg g–1).At 0.61 mM Mn, concentrations of 3–4000 µg g–1 in the youngest fully-developed leaves did not bring about any decline in yield, and levels of up to 5000 µg g–1 occurred in individual potato leaves before Mn toxicity symptoms were observed. Potato foliage grown at the high Mn had similar leaf numbers, but showed an increased stem length and smaller leaves than foliage grown at 0.01 mM Mn. In particular, the leaf area of the middle and lower leaf fractions were affected by the high Mn level.The ability of rapidly growing plants to withstand high concentrations of Mn is discussed in relation to the pattern of dry matter and Mn accumulation shown by potato foliage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号