首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the lactam oxygen atoms of phycocyanobilin from Cyanidium caldarium was studied using 18O labelling. By inhibiting photosynthesis, a high 18O enrichment was maintained in the gas phase and the resulting incorporation of label showed that the lactam oxygen atoms were derived from two oxygen molecules. Slow exchange of these oxygen atoms with water was demonstrated directly by using H218O.  相似文献   

2.
K Alexander  I G Young 《Biochemistry》1978,17(22):4745-4750
The biosynthetic origin of the oxygen atoms of ubiquinone 8 from aerobically grown Escherichia coli was studied by 18O labeling. An apparatus was developed which allowed the growth of cells under a defined atmosphere. Mass spectral analysis of ubiquinone 8 from cells grown under highly enriched 18O2 showed that three oxygen atoms of the quinone are derived from molecular oxygen. It was established that the molecular oxygen is incorporated into the two methoxyl groups (at C-5 and C-6) and one of the carbonyl positions of the ubiquinone molecule by demonstrating that only one of the incorporated oxygens will exchange with water under acidic conditions that specifically catalyze the exchange of carbonyl, but not methoxyl, oxygens. That the C-4 carbonyl oxygen is derived from molecular oxygen was shown by the incorporation of three atoms of 18O2 into ubiquinone 8 biosynthesized from added 4-hydroxybenzoic acid. Comparison of ubiquinone 8 and menaquinone 8 from E. coli grown under 18O2 confirmed that the labeled carbonyl oxygen of the [18O2]ubiquinone 8 is incorporated biosynthetically and not by chemical exchange in the cell. It is concluded that the three hydroxylation reactions involved in the pathway for the aerobic biosynthesis of ubiquinone are all catalyzed by monooxygenases. The implications of this study for the anaerobic biosynthesis of ubiquinone 8 in E coli are discussed.  相似文献   

3.
Mechanistic studies on C-19 demethylation in oestrogen biosynthesis   总被引:9,自引:1,他引:8       下载免费PDF全文
Mechanistic aspects of the biosynthesis of oestrogen have been studied with a microsomal preparation from full-term human placenta. The overall transformation, termed the aromatization process, involves three steps using O2 and NADPH, in which the C-19 methyl group of an androgen is oxidised to formic acid with concomitant production of the aromatic ring of oestrogen: [Formula: see text] To study the mechanism of this process in terms of the involvement of the oxygen atoms, a number of labelled precursors were synthesized. Notable amongst these were 19-hydroxy-4-androstene-3,17-dione (II) and 19-oxo-4-androstene-3,17-dione (IV) in which the C-19 was labelled with 2H in addition to 18O. In order to follow the fate of the labelled atoms at C-19 of (II) and (IV) during the aromatization, the formic acid released from C-19 was benzylated and analysed by mass spectrometry. Experimental procedures were devised to minimize the exchange of oxygen atoms in substrates and product with oxygens of the medium. In the conversion of the 19-[18O] compounds of types (II) and (IV) into 3-hydroxy-1,3,5-(10)-oestratriene-17-one (V, oestrone), it was found that the formic acid from C-19 retained the original substrate oxygen. When the equivalent 16O substrates were aromatized under 18O2, the formic acid from both substrates contained one atom of 18O. It is argued that in the conversion of the 19-hydroxy compound (II) into the 19-oxo compound (IV), the C-19 oxygen of the former remains intact and that one atom of oxygen from O2 is incorporated into formic acid during the conversion of the 19-oxo compound (IV) into oestrogen. This conclusion was further substantiated by demonstrating that in the aromatization of 4-androstene-3,17-dione (I), both the oxygen atoms in the formic acid originated from molecular oxygen. 10β-Hydroxy-4-oestrene-3,17-dione formate, a possible intermediate in the aromatization, was synthesized and shown not to be converted into oestrogen. In the light of the cumulative evidence available to date, stereochemical aspects of the conversion of the 19-hydroxy compound (II) into the 19-oxo compound (IV), and mechanistic features of the C-10–C-19 bond cleavage step during the conversion of the 19-oxo compound (IV) into oestrogen are discussed.  相似文献   

4.
Some isolates of the plant pathogen Nectria haematococca detoxify the isoflavonoid phytoalexin (−)maackiain by hydroxylation at carbon 6a. Precursor feeding studies strongly suggest that the penultimate step in (+)pisatin biosynthesis by Pisum sativum is 6a-hydroxylation of (+)maackiain. We have used 18O labeling to test the involvement of oxygenases in these two reactions. When fungal metabolism of maackiain took place under 18O2, the product was labeled with 99% efficiency; no label was incorporated by metabolism in H218O. Pisatin synthesized by pea pods in the presence of 18O2 or H218O was a mixture of molecules containing up to three labeled oxygen atoms. Primary mass spectra of such mixtures were complex but were greatly simplified by tandem MS. This analysis indicated that the 6a oxygen of pisatin was derived from H2O and not from O2. Labeling patterns for the other five oxygen atoms were consistent with the proposed pathway for biosynthesis of pisatin and related isoflavonoids. We conclude that the fungal hydroxylation of maackiain is catalyzed by an oxygenase, but the biosynthetic route to the 6a hydroxyl of pisatin is unknown.  相似文献   

5.
An enzyme complex was isolated from Arabidopsis thaliana that catalyzes the entire pathway of biosynthesis of the major plant growth hormone, indole-3-acetic acid (IAA), from (S)-tryptophan. The 160-180 kDa, soluble complex catalyzes a strictly O2-dependent reaction which requires no further added factors and is stereospecific for the substrate (S)-tryptophan (app. Km = 120 microM). H2(18)O labeling proved that both oxygen atoms of IAA were delivered via H2O. This, as well as immunological evidence for the presence of a nitrilase-like protein in the complex, suggests the reaction to proceed via the intermediate indole-3-acetonitrile. IAA-synthase forms a tight metabolite channel committed to IAA production and occurs in shoots, roots and cell cultures of A. thaliana.  相似文献   

6.
The mechanism through which the C-17(3) carboxy group of bacteriochlorophyllide a is esterified to produce bacteriochlorophyll aphytyl of Rhodopseudomonas spheroides and bacteriochlorophyll ageranylgeranyl of Rhodospirillum rubrum was studied by using 5-aminolaevulinate labelled with 18O at its C-1 carboxy oxygen atoms. The latter species was prepared by an exchange reaction in which 5-aminolaevulinate hydrochloride was heated in H218O in an autoclave. A method for the determination of the 18O content of the C-1 oxygen atoms of 5-aminolaevulinate was developed. As a prelude to the mechanistic work, a systematic study was undertaken to establish the optimal conditions under which a significant proportion of the bacteriochlorophyll a of the two photosynthetic organisms originated from the exogenously added 5-aminolaevulinate. It was found that, when Rps. spheroides and Rsp. rubrum were grown in the presence of about 0.15mM- and 1.2mM-5-aminolaevulinate respectively, 30-40% of their chlorophyll was derived from the added precursor. In these conditions, 5-amino[1,4-18O3]laevulinate was incorporated into bacteriochlorophyll aphytyl and bacteriochlorophyll ageranylgeranyl by the relevant organisms. The samples of chlorophylls were then hydrolysed with alkali to obtain phytol and geranylgeraniol, which were converted into the corresponding trimethylsilyl derivatives and analysed by gas chromatography-mass spectrometry. The data were used to deduce that the alcohols contained 90-95% of the 18O originally present at each of the C-1 oxygen atoms of the precursor 5-aminolaevulinate. In the light of these results it is suggested that the ester bond at C-17(3) is formed, not by a chlorophyllase type of enzymic reaction, but by a process involving the nucleophilic attack by the C-17(3) carboxylate group of the chlorophyllide on the activated form of an isoprenyl alcohol.  相似文献   

7.
J N Wright  M Akhtar 《Steroids》1990,55(4):142-151
The conversion of androgens into estrogen involves three distinct generic reactions which are catalyzed by a single P450 enzyme (aromatase or P450(aromatase)). The first step in the process is the conversion of 19-methyl into a hydroxymethyl group which requires NADPH + O2, thus representing the well-known hydroxylation process. The next stage, converting the -CH2OH into -CHO, also requires NADPH + O2 and may be rationalized either through a second hydroxylation reaction producing a gem-diol, CH(OH)2 (which dehydrates to the aldehyde), or via another route. The final stage in the process again uses NADPH + O2, culminating in the release of C-19 as formate. Our extensive studies using precursors containing 2H, 3H, and 18O have shown that the carbonyl oxygen of the 19-aldehyde group is the one that was introduced in the first step as the hydroxyl group. The aldehydic oxygen along with another, from O2, used in the third step of the process, is incorporated into the released formate. It was found that at each stage of the process, oxygen atoms were introduced or transferred as "whole numbers." In light of these data, mechanisms in which H2O is used to promote the C-10-C-19 bond cleavage or those in which the conversion of the 19-oxoandrostenedione into estrogen is considered to occur via the sequence -CHO----(-)CH(OH)2----estrogen are eliminated. In addition, our mechanistic analysis makes it unlikely that 1 beta-, 2 beta-, or 10 beta-hydroxysteroids serve as intermediates in estrogen biosynthesis. We consider a free radical mechanism for the hydroxylation process.  相似文献   

8.
During oxidation of nitrite, cells of Nitrobacter winogradskyi are shown to catalyze the active exchange of oxygen atoms between exogenous nitrate molecules (production of 15N16/18O3- during incubation of 14N16/18O3-, 15N16O3-, and 15N16O2- in H216O). Little, if any, exchange of oxygens between nitrate and water also occurs (production of 15N16/18O3- during incubation of 15N16O3- and 14N16O2- in H218O). 15N species of nitrate were assayed by 18O-isotope shift in 15N NMR. Taking into account the O-exchange reactions which occur during nitrite oxidation, H2O is seen to be the source of O in nitrate produced by oxidation of nitrite by N. winogradskyi. The data do not establish whether the nitrate-nitrate O exchange is catalyzed by nitrite oxidase (H2O + HNO2----HNO3 + 2H+ + 2e-) or nitrate reductase (HNO3 + 2H+ + 2e-----HNO2 + H2O) or both enzymes in consort. The nitrate-nitrate exchange reaction suggests the existence of an oxygen derivative of a H2O-utilizing oxidoreductase.  相似文献   

9.
Synthesis of prostaglandin H2 by prostaglandin H synthase (PHS) results in a two-electron oxidation of the enzyme. An active reduced enzyme is regenerated by reducing cofactors, which become oxidized. This report examines the mechanism by which PHS from ram seminal vesicle microsomes catalyzes the oxidation of the reducing cofactor N-acetylbenzidine (ABZ). During the conversion of 0.06 mM ABZ to its final end product, 4'-nitro-4-acetylaminobiphenyl, a new metabolite was observed when 1 mM ascorbic acid was present. Similar results were observed whether 0.2 mM arachidonic acid or 0.5 mM H2O2 was used as the substrate. This metabolite co-eluted with synthetic N'-hydroxy-N-acetylbenzidine (N'HA), but not with N-hydroxy-N-acetylbenzidine. The new metabolite was identified as N'HA by electrospray ionization/MS/MS. N'HA represented as much as 10% of the total radioactivity recovered by high pressure liquid chromatography. When N'HA was substituted for ABZ, PHS metabolized N'HA to 4'-nitro-4-acetylaminobiphenyl. Inhibitor studies demonstrated that metabolism was due to PHS, not cytochrome P-450. The lack of effect of 5,5-dimethyl-1-pyrroline N-oxide, mannitol, and superoxide dismutase suggests the lack of involvement of one-electron transfer reactions and suggests that hydroxyl radicals and superoxide are not sources of oxygen or oxidants. Oxygen uptake studies did not demonstrate a requirement for molecular oxygen. When [18O]H2O2 was used as the substrate, 18O enrichment was observed for 4'-nitro-4-acetylaminobiphenyl, but not for N'HA. A 97% enrichment was observed for one atom of 18O, and a 17 +/- 7% enrichment was observed for two 18O atoms. The rapid exchange of 18O-N'HA with water was suggested to explain the lack of enrichment of N'HA and the low enrichment of two 18O atoms into 4'-nitro-4-acetylaminobiphenyl. Results demonstrate a peroxygenase oxidation of ABZ and N'HA by PHS and suggest a stepwise oxidation of ABZ to N'-hydroxy, 4'-nitroso, and 4'-nitro products.  相似文献   

10.
Incorporation of 18O in cholic anc chenodeoxycholic acid was determined after inhalation of 18O2 by rats with biliary fistula. After a 30-min inhalation, the maximal incorporation of 18O in the three hydroxyl groups of cholic acid was about 1.8 atoms, and in the two hydroxyl groups of chenodeoxycholic acid about 1.1 atoms. About 0.4 atom of 18O in the cholic and chenodeoxycholic acid isolated was present at C-3. It was calculated that at least 50% of the biosynthesized bile acids were derived from newly synthesized cholesterol. The time course for the incorporation of 18O at C-3 of chenodeoxycholic acid was slightly different from that of cholic acid, indicating that a small part of chenodeoxycholic acid might have been synthesized from a pool of cholesterol different from that utilized in the biosynthesis of cholic acid. Incorporation of 18O in biliary cholesterol was less than 0.05 atom, indicating that the major part of this cholesterol is derived from a pool different from that utilized in bile acid biosynthesis.  相似文献   

11.
Acetate and CO2 assimilation by Methanothrix concilii.   总被引:5,自引:2,他引:3       下载免费PDF全文
Biosynthetic pathways in Methanothrix concilii, a recently isolated aceticlastic methanogen, were studied by 13C-nuclear magnetic resonance spectroscopy. Labeling patterns of amino acids, lipids, and carbohydrates were determined. Similar to other methanogens, acetate was carboxylated to pyruvate, which was further converted to amino acids by various biosynthetic pathways. The origin of carbon atoms in glutamate, proline, and arginine clearly showed that an incomplete tricarboxylic acid cycle operating in the oxidative direction was used for their biosynthesis. Isoleucine was synthesized via citramalate, which is a typical route for methanogens. As with Methanosarcina barkeri, an extensive exchange of the label between the carboxyl group of acetate and CO2 was observed. Lipids predominantly contained diphytanyl chains, the labeling of which indicated that biosynthesis proceeded through mevalonic acid. Labeling of the C-1,6 of glucose from [2-13C]acetate is consistent with a glucogenic route for carbohydrate biosynthesis. Except for the different origins of the methyl group of methionine, the metabolic properties of Methanothrix concilii are closely related to those of Methanosarcina barkeri.  相似文献   

12.
Strand scission of DNA by the chromophore of neocarzinostatin converts the 5'-hydroxyl of deoxyribose to a 5'-aldehyde. The origin of the aldehydic oxygen has now been elucidated by mass spectrometry. DNA-associated thymidine 5'-aldehyde produced by treatment of DNA with neocarzinostatin chromophore in 2H218O/16O2 or in 2H216O/18O2 was reduced, liberated by nuclease treatment, permethylated, and analyzed by gas chromatography-mass spectrometry. The data clearly show that molecular oxygen is the only source of the 5'-aldehydic oxygen. The addition of molecular oxygen at C-5', possibly via a reactive form of neocarzinostatin chromophore, must be involved; a carbonium ion intermediate at C-5' is ruled out.  相似文献   

13.
The hydrolysis of ATP catalyzed by phosphorylating vesicles prepared from bovine heart mitochondria by ultrasonic disruption was studied in H218O. Provided that an ATP-generating system was included to prevent accumulation of ADP due to hydrolysis, the addition of 20 mM arsenate or 0.5 mM 2,4-dinitrophenol to the incubation mixture either singly or together, had little or no effect on the number of oxygen atoms from H2O incorporated (on the average) into each molecule of Pi formed by hydrolysis (the O:P ratio). As the ATP concentration was reduced from 2.0 to 0.05 mM, the O:P ratio increased from about 1.4 to over 2.0 and, although dinitrophenol significantly increased the ATPase activity, it did not significantly alter the O:P ratio for a given ATP level. This implies that the uncoupler does not act directly on the terminal transphosphorylation step. Companion experiments were performed in which 18O label was placed either initially in H2O or Pi. Under conditions where extensive exchange from H218O into Pi occurred, no 18O was lost from medium Pi under identical circumstances, thus showing that the exchange was intermediate and did not involve medium Pi. Kinetic plots of v vs. v/S were nonlinear with respect to ATPase activity. The kinetic data, as well as the Pi = H218O exchange data, are consistent with enzyme models having multiple forms of catalytic sites. Several models are evaluated and attempts are made to distinguish between some of the simpler cases of these models.  相似文献   

14.
Chloramphenicol produced by cultures of Streptomyces species 3022a supplemented with sodium [1,2-13C]acetate was labelled with 13C exclusively in the dichloromethine (2.6 +/- 0.1%) and carbonyl (0.59 +/- 0.05% carbon atoms. Satellite signals from 13C-13C coupling between covalently bonded 13C-enriched carbon atoms were too intense to be attributed to random combination of labelled atoms at the average enrichments measured, but their intensity relative to those of the signals for uncoupled 13C atoms indicated that most of the precursor had been incorporated after 13C-13C bond fission. Since [2,3-13c]succinic acid enriched only the carbonyl carbon atom of chloramphenicol, these results suggest that neither acetate nor a Krebs cycle intermediate is a direct precursor of the dichloroacetyl group. Cultures supplemented with [2-3h]-or [2h2]-dichloroacetic acid incorporated negligible amounts of isotope into the antibiotic; on this evidence, the free acid is not an intermediate in chloramphenicol biosynthesis and the acylation step may precede chlorination.  相似文献   

15.
Incubation of epicubenol synthase with farnesyl pyrophosphate in the presence of 11.1 atom% H2(18)O gave epicubenol (2) in which the hydroxyl oxygen atom was shown to be derived exclusively from water, as established by GC-selected ion monitoring MS of the derived TMS-epicubenol derivative (15).  相似文献   

16.
Studies on sphingomyelin metabolism in rat hepatocytes were facilitated by the use of choline-deficient cells which allowed for the rapid labeling of phosphatidylcholine and as a result sphingomyelin. Pulse and pulse-chase studies with [methyl-3H]choline and [methyl-3H]methionine demonstrated that both compounds were effectively used for sphingomyelin biosynthesis and that newly made and pre-existing phosphatidylcholine could be used for sphingomyelin biosynthesis. When hepatocytes were incubated with brefeldin A, there was a 2.4-fold stimulation of the conversion of phosphatidylcholine into sphingomyelin. Since brefeldin A causes collapse of the cis/medial Golgi into the endoplasmic reticulum the stimulation of sphingomyelin biosynthesis could be due to more rapid access of the labeled phosphatidylcholine in the endoplasmic reticulum to sphingomyelin synthase in the collapsed Golgi. Forskolin inhibited the brefeldin A-induced stimulation of sphingomyelin biosynthesis. To investigate whether or not phosphorylation reactions regulate sphingomyelin metabolism, hepatocytes were incubated with okadaic acid, a potent inhibitor of protein phosphatases 1 and 2A. Rather than stimulating sphingomyelin biosynthesis, okadaic acid enhanced the catabolism of sphingomyelin. In contrast, a cyclic AMP analogue and forskolin had no effect on sphingomyelin biosynthesis or catabolism. Surprisingly, other pulse-chase studies demonstrated that okadaic acid stimulated the catabolism of only newly made sphingomyelin. The brefeldin A and okadaic acid effects were independent of lysosomal involvement. Subcellular fractionation studies revealed that brefeldin A and okadaic acid effects were generalized in all sphingomyelin containing membranes. The brefeldin A studies suggest that the rate of transfer of phosphatidylcholine from the endoplasmic reticulum to the Golgi might be limiting for sphingomyelin biosynthesis. The okadaic acid studies indicate that the catabolism of sphingomyelin by a sphingomyelinase is regulated by an unidentified protein kinase and by either protein phosphatase 1 and/or 2A activity in hepatocytes.  相似文献   

17.
5-Aminolaevulinate labelled with 18O at its C-1 carboxy oxygen atoms was prepared and incorporated into bacteriochlorophyll aphytyl of Rhodopseudomonas sphaeroides and bacteriochlorophyll ageranylgeranyl of Rhodospirillum rubrum. The biosynthetic samples of the bacteriochlorophylls were separately processed to obtain their isoprenyl alcohol components from the C-17(3) ester linkages and methanol from the C-13(3) methoxycarbonyl group. Methods were developed for the quantification of the isotopic composition of the various alcohols (methanol, phytol, geranylgeraniol). It was shown that the hydroxyl oxygen atoms of all the three alcohols originated from one of the C-1 oxygen atoms of the precursor 5-aminolaevulinate. In the light of these results the in vivo mechanism for the O-methylation reaction at C-13(3) during the biosynthesis of the two species of bacteriochlorophylls is discussed.  相似文献   

18.
Amino acid biosynthesis in mixed rumen cultures.   总被引:7,自引:0,他引:7       下载免费PDF全文
Mixed rumen micro-organisms, maintained in continuous culture readily incorporated labelled HCO3- and acetate into amino acids. Labelled propionate, in contrast, was utilized only for isoleucine biosynthesis, but failed to label other amino acids to any significant extent. Evidence was obtained showing that in these mixed, i.e. symbiotic, cultures foward tricarboxylic acid-cycle reactions only proceed to 2-oxoglutarate. 14C distribution in amino acids clearly shows that 2-oxoglutarate is not oxidized further by tricarboxylic acid-cycle enzymes. Instead, acetate is carboxylated to pyruvate which is then carboxylated to oxaloacetate. Oxaloacetate equilibrates with fumarate and thereby carbon atoms 1 and 4 as well as carbon atoms 2 and 3 are randomized. Evidence was also obtained for the carboxylation of propionate to 2-oxobutyrate, isovalerate to 4-methyl-2-oxopentanoate, phenylacetate and hydroxyphentlacetate to the corresponding phenyl- and hydroxyphenyl-pyruvic acids and succinate to 2-oxoglutarate. Of the amino acid precursors investigated, only 3-hydroxypyruvate, the precursor of serine, appeared to be synthesized via an oxidative step, i.e. 3-phosphoglyceric acid to 3-phosphohydroxypyruvic acid. Most 2-oxo precursors of amino acids in these organisms appear to be formed via reductive carboxylation of the precursor acid.  相似文献   

19.
Hydrogen Peroxide Stimulates Salicylic Acid Biosynthesis in Tobacco   总被引:30,自引:2,他引:30       下载免费PDF全文
Leon J  Lawton MA  Raskin I 《Plant physiology》1995,108(4):1673-1678
Hydrogen peroxide induced the accumulation of free benzoic acid (BA) and salicylic acid (SA) in tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. Six hours after infiltration with 300 mM H2O2, the levels of BA and SA in leaves increased 5-fold over the levels detected in control leaves. The accumulation of BA and SA was preceded by the rapid activation of benzoic acid 2-hydroxylase (BA2H) in the H2O2-infiltrated tissues. This enzyme catalyzes the formation of SA from BA. Enzyme activation could be reproduced in vitro by addition of H2O2 or cumene hydroperoxide to the assay mixture. H2O2 was most effective in vitro when applied at 6 mM. In vitro activation of BA2H by peroxides was inhibited by the catalase inhibitor 3-amino-1,2,4-triazole. We suggest that H2O2 activates SA biosynthesis via two mechanisms. First, H2O2 stimulates BA2H activity directly or via the formation of its substrate, molecular oxygen, in a catalase-mediated reaction. Second, higher BA levels induce the accumulation of BA2H protein in the cells and provide more substrate for this enzyme.  相似文献   

20.
Stearic acid is a long-chain saturated fatty acid consisting of 18 carbon atoms without double bonds. In the present study, we reported the neuroprotective effects and mechanism of stearic acid on cortical or hippocampal slices insulted by oxygen-glucose deprivation, NMDA or hydrogen peroxide (H(2)O(2)) in vitro. Different types of models of brain slice injury in vitro were developed by 10 min of oxygen/glucose deprivation, 0.5 mM NMDA or 2 mM H(2)O(2), respectively. After 30 min of preincubation with stearic acid (3-30 microM), cortical or hippocampal slices were subjected to oxygen-glucose deprivation, NMDA or H(2)O(2). Then the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride (TTC) method. Population spikes were recorded in randomly selected hippocampal slices. Stearic acid (3-30 microM) dose-dependently protected brain slices from oxygen-glucose deprivation, NMDA and H(2)O(2) insults. Its neuroprotective effect against H(2)O(2) insults can be completely blocked by wortmannin (inhibitor of PI3K) and partially blocked by H7 (inhibitor of PKC) or genistein (inhibitor of TPK). Treatment of cortical or hippocampal slices with 30 microM stearic acid resulted in a significant increase in PI3K activity at 5, 10, 30 and 60 min. These observations reveal that stearic acid can protect cortical or hippocampal slices against injury induced by oxygen-glucose deprivation, NMDA or H(2)O(2), and its neuroprotective effects are via phosphatidylinositol 3-kinase dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号