首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strain of Aspergillus niger, previously isolated from sugarcane bagasse because of its capacity to degrade phenanthrene in soil by solid culture, was used to express a manganese peroxidase gene (mnp1) from Phanerochaete chrysosporium, aiming at increasing its polycyclic aromatic hydrocarbons degradation capacity. Transformants were selected based on their resistance to hygromycin B and the discoloration induced on Poly R-478 dye by the peroxidase activity. The recombinant A. niger SBC2-T3 strain developed MnP activity and was able to remove 95% of the initial phenanthrene (400 ppm) from a microcosm soil system after 17 days, whereas the wild strain removed 72% under the same conditions. Transformation success was confirmed by PCR amplification using gene-specific primers, and a single fragment (1,348 bp long, as expected) of the recombinant mnp1 was amplified in the DNA from transformants, which was absent from the parental strain.  相似文献   

2.
Abstract A combined subtraction hybridization and polymerase chain reaction/amplification technique was used to develop a DNA probe which was specific for the Rhizobium leguminosarum biovar phaseoli and the Rhizobium tropici group. Total genomic DNA preparations from Rhizobium leguminosarum biovar viciae, Rhizobium leguminosarum biovar trifolii, Rhizobium sp., Agrobacterium tumefaciens, Rhizobium fredii, Bradyrhizobium japonicum, Bradyrhizobium ssp. and Rhizobium meliloti were pooled and used as subtracter DNA against total genomic DNA from the Rhizobium leguminosarum biovar phaseolo strain KIM5s. Only one round of subtraction hybridization at 65°C was necessary to remove all cross-hybridizing sequences. Dot blot hybridizations with total genomic DNA of the eight subtracter organisms and 29 bacteria of different groups confirmed the high specificity of the isolated DNA sequences. Dot blot hybridizations and total genomic DNA from ten different R. Leguminosarum biovar phaseoli and R. tropici strains resulted in strong hybridization signals for all strains tested. The DNA probe for the R. tropici and R. leguminosarum biovar phaseoli group was used for dot blot hybridization with DNA extracts from three tropical and one boreal soil. When correlated with data from Most Probable Number analyses the probe was capable of detecting as low as 3 × 104 homologous indigenous rhizobia per g soil. The technique offers great benefits for the development of DNA probes for monitoring bacterial populations in environmental samples.  相似文献   

3.
4.
Non-nodulating Agrobacterium-like strains identified among root nodule isolates of common bean were labeled with gusA, a reporter gene encoding beta-glucuronidase (GUS). Bean plants were then co-inoculated with an infective Rhizobium strain and labeled transconjugants of Agrobacterium-like strains. Blue staining of nodules showed that Agrobacterium-like strains were able to colonize these symbiotic organs. Isolation and characterization by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes revealed a mixed population of Rhizobium and Agrobacterium-like strains in all nodules showing GUS activity. PCR amplification of the nifH gene and nodulation tests did not show any evidence of acquisition of symbiotic gene by lateral transfer from Rhizobium to Agrobacterium-like strains. Moreover, these strains were able to invade mature nodules. Based on sequencing of the 16S rRNA gene, one of these Agrobacterium-like strains showed 99.4% sequence similarity with Agrobacterium bv. 1 reference strains and 99% similarity with an Agrobacterium bv. 1 strain isolated from Acacia mollisima in Senegal. Agrobacterium tumefaciens C58 and the disarmed variant AT123 did not show any ability to colonize nodules. Co-inoculation of bean seeds with Agrobacterium and Rhizobium strains did not enhance nodulation and plant yield under controlled conditions.  相似文献   

5.
Rhizobium sp. strain AC100, which is capable of degrading carbaryl (1-naphthyl-N-methylcarbamate), was isolated from soil treated with carbaryl. This bacterium hydrolyzed carbaryl to 1-naphthol and methylamine. Carbaryl hydrolase from the strain was purified to homogeneity, and its N-terminal sequence, molecular mass (82 kDa), and enzymatic properties were determined. The purified enzyme hydrolyzed 1-naphthyl acetate and 4-nitrophenyl acetate indicating that the enzyme is an esterase. We then cloned the carbaryl hydrolase gene (cehA) from the plasmid DNA of the strain and determined the nucleotide sequence of the 10-kb region containing cehA. No homologous sequences were found by a database homology search using the nucleotide and deduced amino acid sequences of the cehA gene. Six open reading frames including the cehA gene were found in the 10-kb region, and sequencing analysis shows that the cehA gene is flanked by two copies of insertion sequence-like sequence, suggesting that it makes part of a composite transposon.  相似文献   

6.
Isolated soil DNA from an oak-hornbeam forest close to Cologne, Germany, was suitable for PCR amplification of gene segments coding for the 16S rRNA and nitrogenase reductase (NifH), nitrous oxide reductase (NosZ), cytochrome cd(1)-containing nitrite reductase (NirS), and Cu-containing nitrite reductase (NirK) of denitrification. For each gene segment, diverse PCR products were characterized by cloning and sequencing. None of the 16S rRNA gene sequences was identical to any deposited in the data banks, and therefore each of them belonged to a noncharacterized bacterium. In contrast, the analyzed clones of nifH gave only a few different sequences, which occurred many times, indicating a low level of species richness in the N2-fixing bacterial population in this soil. Identical nifH sequences were also detected in PCR amplification products of DNA of a soil approximately 600 km distant from the Cologne area. Whereas biodiversity was high in the case of nosZ, only a few different sequences were obtained with nirK. With respect to nirS, cloning and sequencing of the PCR products revealed that many false gene segments had been amplified with DNA from soil but not from cultured bacteria. With the 16S rRNA gene data, many sequences of uncultured bacteria belonging to the Acidobacterium phylum and actinomycetes showed up in the PCR products when isolated DNA was used as the template, whereas sequences obtained for nifH and for the denitrification genes were closely related to those of the proteobacteria. Although in such an experimental approach one has to cope with the enormous biodiversity in soils and only a few PCR products can be selected at random, the data suggest that denitrification and N2 fixation are not genetic traits of most of the uncultured bacteria.  相似文献   

7.
Lowering of plant ethylene by deamination of its immediate precursor 1-aminocyclopropane-1-carboxylate (ACC) is a key trait found in many rhizobacteria. We isolated and screened bacteria from the rhizosphere of wheat for their ACC-degrading ability. The ACC deaminase gene (acdS) isolated from two bacterial isolates through PCR amplification was cloned and sequenced. Nucleotide sequence alignment of these genes with previously reported genes of Pseudomonas sp. strain ACP and Enterobacter cloacae strain UW4 showed variation in their sequences. In the phylogenetic analysis, distinctness of these two genes was observed as a separate cluster. 16S rDNA sequencing of two isolates identified them to be Achromobacter sp. and Pseudomonas stutzeri.  相似文献   

8.
Summary Four strains ofRhizobium trifolii were individually inoculated to pots containing sterilized sand vermiculite mixture, half of which were seeded with red clover and half not. Pots were maintained in an ordinary glasshouse and watered with tap water.Phage was first detected after 4 months, and almost all pots contained one or more phages againstRhizobium trifolii after 9 months. The presence of plants increased the titer of phages in some pots inoculated withR. trifolii, but had no effect on the number of different phages.The pots also contained phages against soil bacteria other than Rhizobium indicating that phages are spread readily and constitute a normal part of the life cycle of soil bacteria.The number of different phages isolated from the pots was affected by the strain of Rhizobium used as inoculum.  相似文献   

9.
Symbiotic nitrogen fixation of rhizobia and leguminous plants is considered as the most important biologic nitrogen fixation system on earth. Symbiotic nodulation of gymnosperm Podocarpus macro-phyllus and rhizobia has never been reported. In this study, 11 endophytic bacteria strains were isolated from root nodules of P. macrophyllus and its variation P. macrophyllus var. maki. The plant infection tests on these strains indicated that the isolated strains could be nodulated on P. macrophyllus plants, and weak nitrogenase activity of nodules was found in acetylene reduction method. According to the physiological and biochemical characteristics of the 11 strains, GXLO 02 was selected as the representative strain. 16S rDNA full-length sequence analysis of GXLO 02 confirmed that the representative strain GXLO 02 belongs to Rhizobium sp.  相似文献   

10.
Symbiotic nitrogen fixation of rhizobia and leguminous plants is considered as the most important biologic nitrogen fixation system on earth. Symbiotic nodulafion of gymnosperm Podocarpus macrophyllus and rhizobia has never been reported. In this study, 11 endophytic bacteria strains were isolated from root nodules of P. macrophyllus and its variation P. macrophyllus var. maki. The plant infection tests on these strains indicated that the isolated strains could be nodulated on P. macrophyllus plants, and weak nitrogenase activity of nodules was found in acetylene reduction method. According to the physiological and biochemical characteristics of the 11 strains, GXLO 02 was selected as the representative strain. 16S rDNA full-length sequence analysis of GXLO 02 confirmed that the representative strain GXLO 02 belongs to Rhizobium sp.  相似文献   

11.
The use of molecular tools for early and rapid detection of gram-negative histamine-producing bacteria is important for preventing the accumulation of histamine in fish products. To date, no molecular detection or identification system for gram-negative histamine-producing bacteria has been developed. A molecular method that allows the rapid detection of gram-negative histamine producers by PCR and simultaneous differentiation by single-strand conformation polymorphism (SSCP) analysis using the amplification product of the histidine decarboxylase genes (hdc) was developed. A collection of 37 strains of histamine-producing bacteria (8 reference strains from culture collections and 29 isolates from fish) and 470 strains of non-histamine-producing bacteria isolated from fish were tested. Histamine production of bacteria was determined by paper chromatography and confirmed by high-performance liquid chromatography. Among 37 strains of histamine-producing bacteria, all histidine-decarboxylating gram-negative bacteria produced a PCR product, except for a strain of Citrobacter braakii. In contrast, none of the non-histamine-producing strains (470 strains) produced an amplification product. Specificity of the amplification was further confirmed by sequencing the 0.7-kbp amplification product. A phylogenetic tree of the isolates constructed using newly determined sequences of partial hdc was similar to the phylogenetic tree generated from 16S ribosomal DNA sequences. Histamine accumulation occurred when PCR amplification of hdc was positive in all of fish samples tested and the presence of powerful histamine producers was confirmed by subsequent SSCP identification. The potential application of the PCR-SSCP method as a rapid monitoring tool is discussed.  相似文献   

12.
Most Rhizobium species described are symbionts that form nodules on legume roots; however, non-nodulating strains of Rhizobium are also widespread in nature. Unfortunately, knowledge of non-nodulating Rhizobium is quite limited compared with nodulating Rhizobium . Here, we studied the phylogenetic diversity of Rhizobium species that inhabit Japanese red pine roots ( Pinus densiflora ). Because fine roots of pine trees are usually colonized by ectomycorrhizal fungi in nature, we mainly used ectomycorrhizal root tips for bacterial isolation. Out of 1195 bacteria isolated from 75 independent root samples from the field and greenhouse experiments, 102 isolates were confirmed to be Rhizobium following partial 16S rRNA gene analysis. Rhizobium species were occasionally dominant in culturable bacterial communities, whereas no Rhizobium species were isolated from the soil itself. Molecular phylogenetic analyses using 16S rRNA, atpD , and recA gene sequences revealed that isolated Rhizobium strains were phylogenetically diverse and that several were distantly related to known Rhizobium species. Considering that a single species of pine is associated with unique and phylogenetically diverse Rhizobium populations, we should pay more attention to non-nodulating strains to better understand the diversity, ecology, and evolution of the genus Rhizobium and plant– Rhizobium associations.  相似文献   

13.
Rhizobium–legume symbiotic interaction is an efficient model system for soil remediation and reclamation. We earlier isolated an arsenic (As) (2.8 mM arsenate) tolerant and symbiotically effective Rhizobium strain, VMA301 from Vigna mungo and in this study we further characterized its efficacy for arsenic removal from the soil and its nitrogen fixation capacity. Although nodule formation is delayed in plants with As-treated composite when the inoculum was prepared without arsenic in culture medium, whereas it attains the significant number of nodules compare to plant grown in As-free soil when the inoculum was prepared with arsenic supplemented medium. Arsenic accumulation was higher in roots than root nodules. Nitrogenase activity is reduced to almost 2 fold in plants with As-treated soil but not abolished. These results suggest that this strain, VMA301, has been able to establish an effective symbiotic interaction in V. mungo in As-contaminated soil and can perform dual role of arsenic bioremediation as well as soil nitrogen improvement.  相似文献   

14.
A total of 25 isolates from root nodules of yam bean (Pachyrhizus erosus L. Urban), a tuber-producing leguminous plant, were characterized. All isolates formed effective nodules mainly on lateral roots while edible tubers were developed on the taproot. The root nodules formed were identified as the typical determinate type. By an analysis of the partial sequences of the 16S rRNA gene (approximately 300 bp) of 10 strains which were selected randomly, the isolated root nodule bacteria of yam bean were classified into two different genera, Rhizobium and Bradyrhizobium. Two strains, YB2 (Bradyrhizobium group) and YB4 (Rhizobium group) were selected and used for further analyses. The generation time of each strain was shown to be 22.5 h for strain YB2 and 0.8 h for strain YB4, respectively. Differences between strains YB2 and YB4 were also reflected in the bacteroid state in the symbiosome. Symbiosome in nodule cells for the strain YB4 contained one bacteroid cell in a peribacteroid membrane, whereas a symbiosome for strain YB2 contained several bacteroid cells.  相似文献   

15.
长期在砷污染环境生存的细菌逐渐演化出抗砷机制,旨在评价分离自湖南铅锌矿区污染土壤的Pseudomonas sp.Tw224抗砷能力和抗重金属谱;揭示该菌的抗砷基因/基因簇的功能.在砷或重金属存在条件下测量细菌的生长情况,对该菌的抗砷能力和抗重金属谱进行评价;通过基因组框架图分析该菌的抗砷基因/基因簇;采用代谢工程法构建...  相似文献   

16.
The use of molecular tools for early and rapid detection of gram-negative histamine-producing bacteria is important for preventing the accumulation of histamine in fish products. To date, no molecular detection or identification system for gram-negative histamine-producing bacteria has been developed. A molecular method that allows the rapid detection of gram-negative histamine producers by PCR and simultaneous differentiation by single-strand conformation polymorphism (SSCP) analysis using the amplification product of the histidine decarboxylase genes (hdc) was developed. A collection of 37 strains of histamine-producing bacteria (8 reference strains from culture collections and 29 isolates from fish) and 470 strains of non-histamine-producing bacteria isolated from fish were tested. Histamine production of bacteria was determined by paper chromatography and confirmed by high-performance liquid chromatography. Among 37 strains of histamine-producing bacteria, all histidine-decarboxylating gram-negative bacteria produced a PCR product, except for a strain of Citrobacter braakii. In contrast, none of the non-histamine-producing strains (470 strains) produced an amplification product. Specificity of the amplification was further confirmed by sequencing the 0.7-kbp amplification product. A phylogenetic tree of the isolates constructed using newly determined sequences of partial hdc was similar to the phylogenetic tree generated from 16S ribosomal DNA sequences. Histamine accumulation occurred when PCR amplification of hdc was positive in all of fish samples tested and the presence of powerful histamine producers was confirmed by subsequent SSCP identification. The potential application of the PCR-SSCP method as a rapid monitoring tool is discussed.  相似文献   

17.
A multiple metal-resistant Brevibacterium sp. strain CS2, isolated from an industrial wastewater, resisted arsenate and arsenate upto 280 and 40 mM. The order of resistance against multiple metals was Arsenate > Arsenite > Selenium = Cobalt > Lead = Nickel > Cadmium = Chromium = Mercury. The bacterium was characterized as per morphological and biochemical characteristics at optimum conditions (37 ℃ and 7 pH). The appearance of brownish color precipitation was due to the interaction of silver nitrate confirming its oxidizing ability against arsenic. The strain showed arsenic processing ability at different temperatures, pH, and initial arsenic concentration which was 37% after 72 h and 48% after 96 h of incubation at optimum conditions with arsenite 250 mM/L (initial arsenic concentration). The maximum arsenic removal ability of strain CS2 was determined for 8 days, which was 32 and 46% in wastewater and distilled water, respectively. The heat-inactivated cells of the isolated strain showed a bioremediation efficiency (E) of 96% after 10 h. Genes cluster (9.6 kb) related to arsenite oxidation was found in Brevibacterium sp. strain CS2 after the genome analysis of isolated bacteria through illumine and nanopore sequencing technology. The arsenite oxidizing gene smaller subunit (aioB) on chromosomal DNA locus (Prokka_01508) was identified which plays a role in arsenite oxidation for energy metabolism. The presence of arsenic oxidizing genes and an efficient arsenic oxidizing potential of Brevibacterium sp. strain CS2 make it a potential candidate for green chemistry to eradicate arsenic from arsenic-contaminated wastewater.  相似文献   

18.
Genetic diversity of carbofuran-degrading soil bacteria   总被引:4,自引:0,他引:4  
The genetic diversity of 128 carbofuran-degrading bacteria was determined by ARDRA (amplified ribosomal DNA restriction analysis) of 16S rDNA and restriction fragment length polymorphism analysis of the 16S-23S rDNA spacer region (IGS) using five endonucleases. The isolates were distributed in 26 distinct ARDRA groups and 45 IGS types revealing a high level of microbial diversity confirmed by ARDRA clustering and sequencing of 16S rDNA. The occurrence of a methylcarbamate-degrading gene (mcd) was monitored by polymerase chain reaction amplification using specific primers. The mcd gene was detected only in 58 bacteria and there was no clear relationship between the presence of this gene and the phylogenetic position of the strain.  相似文献   

19.
Perlova O  Nawroth R  Zellermann EM  Meletzus D 《Gene》2002,297(1-2):159-168
The glnD gene of Gluconacetobacter diazotrophicus was isolated by complementation of the Azotobacter vinelandii glnD (nfrX) mutant strain MV17 using a pLAFR3 cosmid library. The 5 kb chromosomal DNA region encoding the glnD gene on cosmid pAD401 was identified by introduction of deletions as well as subcloning of restriction fragments followed by subsequent DNA sequencing. Three open reading frames were identified with the deduced amino acid sequence of ORF1 showing significant homologies to known GlnD proteins of other proteobacteria such as Sinorhizobium meliloti, Rhizobium tropici, Escherichia coli and Azotobacter vinelandii.A mutagenesis of the chromosomal glnD gene was carried out by insertion of an interposon carrying the kanamycin resistance gene of Tn5. Mutants carrying the cassette inserted into a central region of glnD could not be isolated, while an interposon mutation at the 3' end of glnD was successful. The resulting strain showed a prolonged generation time in complex growth medium and was unable to utilize ammonium as sole nitrogen source. This phenotype appears to be pleiotropic, since the addition of single amino acids to the minimal medium was not sufficient to allow growth. Furthermore, the glnD mutant was able to express nitrogenase under diazotrophic as well as repressing growth conditions.  相似文献   

20.
Nitrogen-fixing symbiosis between bacteria and the tree legume mesquite (Prosopis glandulosa) is important for the maintenance of many desert ecosystems. Genes essential for nodulation and for extending the host range to mesquite were isolated from cosmid libraries of Rhizobium (mesquite) sp. strain HW17b and Bradyrhizobium (mesquite) sp. strain HW10h and were shown to be closely linked. All of the cosmid clones of rhizobia that extended the host range of Rhizobium (Parasponia) sp. strain NGR234CS to mesquite also supported nodulation of a Sym- mesquite strain. The cosmid clones of bradyrhizobia that extended the host range of Rhizobium (Parasponia) sp. strain NGR234CS to mesquite were only able to confer nodulation ability in the Sym- mesquite strain if they also contained a nodD-hybridizing region. Subclones containing just the nodD genes of either genus did not extend the host range of Rhizobium (Parasponia) sp. to mesquite, indicating that the nodD gene is insufficient for mesquite nodulation. The nodD gene region is conserved among mesquite-nodulating rhizobia regardless of the soil depth from which they were collected, indicating descent from a common ancestor. In a tree of distance relationships, the NodD amino acid sequence from mesquite rhizobia clusters with homologs from symbionts that can infect both herbaceous and tree legumes, including Rhizobium tropici, Rhizobium leguminosarum bv; phaseoli, Rhizobium loti, and Bradyrhizobium japonicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号