共查询到20条相似文献,搜索用时 0 毫秒
1.
Alan J. Lewitus Bonnie M. Willis Kenneth C. Hayes JoAnn M. Burkholder Howard B. Glasgow Jr. Patricia M. Glibert Marianne K. Burke 《Journal of phycology》1999,35(6):1430-1437
The nutritional versatility of dinoflagellates is a complicating factor in identifying potential links between nutrient enrichment and the proliferation of harmful algal blooms. For example, although dinoflagellates associated with harmful algal blooms (e.g. red tides) are generally considered to be phototrophic and use inorganic nutrients such as nitrate or phosphate, many of these species also have pronounced heterotrophic capabilities either as osmotrophs or phagotrophs. Recently, the widespread occurrence of the heterotrophic toxic dinoflagellate, Pfiesteria piscicida Steidinger et Burkholder, has been documented in turbid estuarine waters. Pfiesteria piscicida has a relatively proficient grazing ability, but also has an ability to function as a phototroph by acquiring chloroplasts from algal prey, a process termed kleptoplastidy. We tested the ability of kleptoplastidic P. piscicida to take up 15 N-labeled NH , NO , urea, or glutamate. The photosynthetic activity of these cultures was verified, in part, by use of the fluorochrome, primulin, which indicated a positive relationship between photosynthetic starch production and growth irradiance. All four N substrates were taken up by P. piscicida , and the highest uptake rates were in the range cited for phytoplankton and were similar to N uptake estimates for phagotrophic P. piscicida . The demonstration of direct nutrient acquisition by kleptoplastidic P. piscicida suggests that the response of the dinoflagellate to nutrient enrichment is complex, and that the specific pathway of nutrient stimulation (e.g. indirect stimulation through enhancement of phytoplankton prey abundance vs. direct stimulation by saprotrophic nutrient uptake) may depend on P. piscicida 's nutritional state (phagotrophy vs. phototrophy). 相似文献
2.
Karen A. Steidinger JoAnn M. Burkholder Howard B. Glasgow Cecil W. Hobbs Julie K. Garrett Earnest W. Truby Edward J. Noga Stephen A. Smith 《Journal of phycology》1996,32(1):157-164
The newly described toxic dinoflagellate Pfiesteria piscicida is a polymorphic and multiphasic species with flagellated, amoeboid, and cyst stages. The species is structurally a heterotroph; however, the flagellated stages can have cleptochloroplasts in large food vacuoles and can temporarily function as mixotrophs. The flagellated stage has a typical mesokaryotic nucleus, and the theca is composed of four membranes, two of which are vesicular and contain thin plates arranged in a Kofoidian series of Po, cp, X, 4′, 1a, 5″, 6c, 4s, 5″′, and 2″″. The plate tabulation is unlike that of any other armored dinoflagellate. Nodules often demark the suture lines underneath the outer membrane, but fixation protocols can influence the detection of plates. Amoeboid benthic stages can be filose to lobose, are thecate, and have a reticulate or spiculate appearance. Amoeboid stages have a eukaryotic nuclear profile and are phagocytic. Cyst stages include a small spherical stage with a honeycomb, reticulate surface and possibly another stage that is elongate and oval to spherical with chrysophyte-like scales that can have long bracts. The species is placed in a new family, Pfiesteriaceae, and the order Dinamoebales is emended. 相似文献
3.
R. Wayne Litaker Patricia A. Tester Angelo Colorni Michael G. Levy Edward J. Noga 《Journal of phycology》1999,35(6):1379-1389
The taxonomic relationship between heterotrophic and parasitic dinoflagellates has not been studied extensively at the molecular level. In order to investigate these taxonomic relationships, we sequenced the small subunit (SSU) ribosomal RNA gene of Pfiesteria piscicida (Steidinger et Burkholder), a Pfiesteria -like dinoflagellate, Cryptoperidiniopsoid sp., and Amyloodinium ocellatum (Brown) and submitted those sequences to GenBank. Pfiesteria piscicida and Cryptoperidiniopsoid sp. are heterotrophic dinoflagellates, purportedly pathogenic to fish, and A. ocellatum, a major fish pathogen, has caused extensive economic losses in both the aquarium and aquaculture industries. The pathogenicity of the Pfiesteria -like dinoflagellate is unknown at this time, but its growth characteristics and in vitro food preferences are similar to those of P. piscicda. The SSU sequences of these species were aligned with the other full-length dinoflagellate sequences, as well as those of representative apicomplexans and Perkinsus species, the groups most closely related to dinoflagellates. Phylogenetic analyses indicate that Cryptoperidiniopsoid sp., P. piscicida, and the Pfiesteria -like dinoflagellate are closely related and group into the class Blastodiniphyceae, as does A. ocellatum. None of the species examined were closely related to the apicomplexans or to Perkinsus marinus, the parasite that causes "Dermo disease" in oysters. The overall phylogenetic analyses largely supported the current class and subclass groupings within the dinoflagellates. 相似文献
4.
Lawrence W. Harding 《Journal of phycology》1988,24(2):274-281
The estuarine dinoflagellate, Prorocentrum mariaelebouriae (Parke & Ballantine 1957) Faust 1974 undergoes increases in pigmentation and photosynthetic efficiency within several days of downward light shifts. These changes can be described by first-order kinetics, as has been reported previously for Chlorophyll (Chl) a in several phytoplankton species. The studies described in this paper were conducted with isolates of populations of Prorocentrum from the Chesapeake Bay. We determined rates of adaptation to low-light for cultures grown at a range of photon flux densities (I0= 2.65–26.2 E.m?2, d?1, shifted to 6.3–7.0% I0) at three temperatures (10°, 15°, and 20° C), bracketing the conditions this species experiences in situ. In this paper, I report the time-course of changes in α, Pmax Chl a, peridinin, and Ik and first-order rate constants, K1 for changes in α, Chl a and peridinin. cell?1. K1 for changes in α cell?1 averaged 1.58 × 10?2 h?1 for conditions encompassing five light treatments and three temperatures; the corresponding mean for Chl a was 1.59 × 10?2 h?1. Increases in peridinin measured for five light treatments at 15° C showed a mean K1 of 1.22 × 10?2 h?1, Average percent changes in per cell α, Chl a, and peridinin ranged from 0.4–4.0% h?1 (10–90% d?1) following exposure to low-light. Photoadaptive changes are important to Prorocentrum because in nature it occupies turbid waters (Kt≥ 0.5 m?1) where the mixing depth often exceeds the depth of the photic layer. Cells are entrained beneath a seasonally-stable density discontinuity and are exposed to very low-light (< I E.m?2.d?1) for days to weeks during subpycnocline transport. The ability of this species to undergo changes in pigmentation and photosynthetic physiology confers increased efficiency of light harvesting and contributes to this species’survival in the estuary where it is an important component of the dinoflagellate flora. 相似文献
5.
6.
Karen A. Steidinger Jan H. Landsberg Earnest W. Truby Beverly S. Roberts 《Journal of phycology》1998,34(3):431-437
Fish and invertebrate kills were reported from September to October 1996 in the Indian River, Florida, coincident with blooms of the dinoflagellate Gymnodinium pulchellum Larsen 1994. This is the first report of a bloom of this species in the Americas. Fish and invertebrate species affected were common snook ( Centropomus undecimalis ), striped mullet ( Mugil cephalus ), hardhead catfish ( Arius felis ), red drum ( Sciaenops ocellatus ), sheepshead ( Archosargus probatocephalus ), black drum ( Pogonias cromis ), blue crab ( Callinectes sapidus ), and shrimp ( Penaeus spp.). However, Gymnodinium pulchellum has previously caused fish kills in Japan and Australia. Examination of archived phytoplankton samples from a fish kill reported in the same area of the Indian River in August 1990 confirmed the presence of high concentrations of G. pulchellum. Fish kills associated with Alexandrium monilatum and potentially Pfiesteria -like species in the Indian River also are discussed. Scanning electron microscopy provided additional morphological detail on this distinct but little-known dinoflagellate. 相似文献
7.
Cécile Jauzein Claire Labry Agnès Youenou Julien Quéré Daniel Delmas Yves Collos 《Journal of phycology》2010,46(5):926-936
Alexandrium catenella (Whedon et Kof.) Balech has exhibited seasonal recurrent blooms in the Thau lagoon (South of France) since first reported in 1995. Its appearance followed a strong decrease (90%) in phosphate (PO43?) concentrations in this environment over the 1970–1995 period. To determine if this dinoflagellate species has a competitive advantage in PO43?‐limited conditions in terms of nutrient acquisition, semicontinuous cultures were carried out to characterize phosphorus (P) uptake by A. catenella cells along a P‐limitation gradient using different dilution rates (DRs). Use of both inorganic and organic P was investigated from measurements of 33PO43? uptake and alkaline phosphatase activity (APA), respectively. P status was estimated from cellular P and carbon contents (QP and QC). Shifts in trends of QP/QC and QP per cell (QP·cell?1) along the DR gradient allowed the definition of successive P‐stress thresholds for A. catenella cells. The maximal uptake rate of 33PO43? increased strongly with the decrease in DR and the decrease in QP/QC, displaying physiological acclimations to PO43? limitation. Concerning maximal APA per cell, the observation of an all‐or‐nothing pattern along the dilution gradient suggests that synthesis of AP was induced and maximized at the cellular scale as soon as PO43? limitation set in. APA variations revealed that the synthesis of AP was repressed over a PO43? threshold between 0.4 and 1 μM. As lower PO43? concentrations are regularly observed during A. catenella blooms in Thau lagoon, a significant portion of P uptake by A. catenella cells in the field may come from organic compounds. 相似文献
8.
Gustaaf M. Hallegraeff Peter D. Nichols John K. Volkman Susan I. Blackburn David A. Everitt 《Journal of phycology》1991,27(5):591-599
Cultures and field samples of the toxic dinoflagellate Gymnodinium catenatum Graham from Tasmania, Australia, were analyzed for pigment, fatty acid, and sterol composition. Gymnodinium catenatum contained the characteristic pigments of photosynthetic dinoflagellates, including chlorophyll a, chlorophyll c2, and the carotenoids peridinin, dinoxanthin, diadinoxanthin, diatoxanthin, and β,β-carotene. In midlogarithmic and early stationary phase cultures, the chlorophyll a content ranged 50–72 pg · cell?1, total lipids 956–2084 pg · cell?1, total fatty acids 426–804 pg · cell?1, and total sterols 8–20 pg · cell?1. The major fatty acids (in order of decreasing abundance) were 16:0, 22:6(n-3), and 20:5(n-3) (collectively 65–70% of the total fatty acids), followed by 16:1(n-7), 18:2(n-6), and 14:0. This distribution is characteristic of most dinoflagellates, except for the low abundance (<3%) of the fatty acid 18:5(n-3), considered by some authors to be a marker for dinoflagellates. The three major sterols were 4α-methyl-5α-cholest-7-en-3β-ol, 4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol (the dinoflagellate sterol, dinosterol), and 4α,23,24-trimethyl-5α-cholest-7-en-3β-ol. These three sterols comprised about 75% of the total sterols in both logarithmic and early stationary phase cultures, and they were also found in high proportions (22–25%) in natural dinoflagellate bloom samples. 4-Desmethyl sterols, which are common in most microalgae, were only present in trace amounts in G. catenatum. The chemotaxonomic affinities of G. catenatum and the potential for using specific signature lipids for monitoring toxic dinoflagellate blooms are discussed. 相似文献
9.
Cyst formation in Ceratium hirundinella (O. F. Müll.) Bergh was studied by light and electron microscopy, using material from several lakes and reservoirs and also laboratory cultures. Cells preparing to encyst build up large quantities of starch and lipid and at the same time reduce their other cell components. The cyst is released from the theca as a naked cell bounded by a double membrane. The most commonly found cyst deposits a layer of electron-dense granules containing silicon on the outer membrane and lays down a cellulose-like material between the two membranes. Cysts without the electron-dense granules are commonly formed in cultures but rarely found in lakes. These cysts appear less resistant to decay and do not show the reorganization of cell contents for dormancy. It is suggested that C. hirundinella has both a resting cyst, forming part of the life cycle, and a temporary cyst stage. 相似文献
10.
This paper presents results of field studies on the estuarine dinoflagellate Prorocentrum mariae-lebouriae (Parke & Ballantine) Faust in Chesapeake Bay. We tested the hypothesis that the photosynthetic physiology of Prorocentrum shows adaptive responses to low-light during a lengthy subpycnocline transport in estuarine circulation. Prorocentrum underwent a seasonal, northward trnasport between February and June, 1984 and 1985. Low cell densities occurred in the seaward part of the estuary during winter and early-spring, subpycnocline populations progressed up-estuary in the ensuring 2–3 months, and dense surface populations developed in the mesohaline portion of the estuary thereafter. We sampled Prorocentrum from surface and subpycnocline waters and measured photosynthesis-light (P-I) relations with in situ incubations. The photophysiology of Prorocentrum collected below the pycnoline differed from that of cells in the surface mixed layer in that photosynthetic efficiency, α-cell?1, was higher, photosynthetic capacity, Pmax-cell?1 was ·4 times greater for subpycnocline (≦ 10m) samples than for those from the surface mixed layer (≧ 6m). Comparison of in situ photosynthetic properties to those generated in laboratory studies showed that values of α·cell?1 for both surface and subpycnocline samples were in the range found for cultures in low-light. Concentrations of Chls a, c and peridinin·cell?1 and molar pigment ratios peridinin: Chl a and Chl a: Chl c were not significantly different for the surface and subpycnocline samples, nor were C · cell?1 or C : Chl a. Chloroplast and starch volume fractions and the number of thylakoids were the same for samples collected at different depths, and there was no evidence of cytoplasmic vacuolization in any field samples. These morphometric data for cells from natural populations of Prorocentrum most closely resembled data for laboratory cultures grown at or near 2.6E·m-?2·4d?1. A lower growth irradiance of 0.3E·m?2·d?1 produced indications of stress in cultures, including starch depletion and vacuolization, that were never observed in natural populations. Based on the combination of these findings, we conclude that Prorocentrum is adapted to low-light both in the surface mixed layer and beneath the pycnocline, although certain photophysiological characteristics distinguish these two groups of samples. 相似文献
11.
ABSTRACT. The toxic dinoflagellate, Pfiesteria piscicida, was recently implicated as the causative agent for about 50% of the major fish kills occurring over a three-year period in the Albemarle-Pamlico Estuarine System of the southeastern USA. Transformations between life-history stages of this dinoflagellate are controlled by the availability of fresh fish secretions or fish tissues, and secondarily influenced by the availability of alternate prey including bacteria, algae, microfauna, and mammalian tissues. Toxic zoospores of P. piscicida subdue fish by excreting lethal neurotoxins that narcotize the prey, disrupt its osmoregulatory system, and attack its nervous system. While prey are dying, the zoospores feed upon bits of fish tissue and complete the sexual phase of the dinoflagellate life cycle. Other stages in the complex life cycle of P. piscidia include cryptic forms of filose, rhizopodial, and lobose amoebae that can form within minutes from toxic zoospores, gametes, or planozygotes. These cryptic amoebae feed upon fish carcasses and other prey and, thus far, have proven less vulnerable to microbial predators than flagellated life-history stages. Lobose amoebae that develop from toxic zoospores and planozygotes during colder periods have also shown ambush behavior toward live fish. In the presence of abundant flagellated algal prey, amoeboid stages produce nontoxic zoospores that can become toxic and form gametes when they detect what is presumed to be a threshold level of a stimulatory substance(s) derived from live fish. The diverse amoeboid stages of this fish “ambush-predator” and at least one other Pfiesteria-like species are ubiquitous and abundant in brackish waters along the western Atlantic and Gulf Coasts, indicating a need to re-evaluate the role of dinoflagellates in the microbial food webs of turbid nutrient-enriched estuaries. 相似文献
12.
Thick-walled, nonmotile cysts (termed hypnocysts) of two dinoflagellates were isolated from estuarine sediments in Cape Cod, Massachusetts, and germinated to produce their respective motile, thecate stages. Hypnocysts from Orleans district were identified as Gonyaulax excuvata (Braarud) Balech sensu Loeblich & Loeblich. Visually identical hypnocysts from Falmouth district were provisionally identified as Gonyaulax tamarensis Lebour. Both species were toxic. A geographic survey in September detected hypnocysts in only the sediments of locations where toxic blooms developed the preceding and following Spring. Laboratory incubation (16 C) of hypnocysts from sediment samples stored in the dark (5 C) for 6 mo initiated excystment by the temperature increase, with no appreciable effect from light regime, nutrient, or chelator concentrations. Motility of excysted germlings was optimum in highly chelated medium and in the presence of light. We conclude that hypnocysts of both tasa are important in seeding recurrent annual blooms, synchronizing early bloom development with vernal warning of seawater and increasing the geographic range of the species. We suggest that many red tides in New England and eastern Canadian waters are initiated through the displacement of motile estuarine populations into nearshore area by tidal advection and surface runoff, although the potential existence and importance of offshore cyst reservoirs cannot be discounted. Evidence is presented that hypnocysts are probable sexual zygotes whereas the thin-walled cysts readily formed in laboratory cultures (pellicle cyst) are asexual. Pellicle cysts are of limited durability, do not overwinter in nature, and therefore do not play a significant role in initiating toxic blooms. 相似文献
13.
Donald M. Anderson David M. Kulis Bruce A. Keafer Elisa Berdalet 《Journal of phycology》1999,35(4):870-883
The toxic dinoflagellate Alexandrium fundyense Balech was grown under temperature- and nutrient-limited conditions, and changes in labeling intensity on intact cells were determined for two probe types: an oligonucleotide probe targeting rRNA and a monoclonal antibody (MAb) targeting a cell surface protein. In nutrient-replete batch culture, labeling with the rRNA probe was up to 400% brighter during exponential phase than during stationary phase, whereas MAb labeling did not change significantly with growth stage at the optimal growth temperature. In cultures grown at suboptimal, low temperatures, there was a significant difference between labeling intensity in stationary versus exponential phase for both probe types, with exponential cells labeling brighter with the rRNA probe and slightly weaker with the MAb. The decrease in rRNA probe labeling with increasing culture age was likely due to lower abundance of the target nucleic acid, as extracted RNA varied in a similar manner. With the MAb and the rRNA probes, slower growing cultures at low, nonoptimal temperature labeled 35% and 50% brighter than cells growing faster at warmer temperatures. Some differences in labeling intensity per cell disappeared when the data were normalized to surface area or volume, which indicated that the number of target antigens or rRNA molecules was relatively constant per unit area or volume, respectively. Slow growth accompanying phosphorus and nitrogen limitation resulted in up to a 400% decrease in labeling intensity with the rRNA probe compared to nutrient-replete levels, whereas the MAb labeling intensity increased by a maximum of 60%. With both probes, labeling was more intense under phosphorus limitation than under nitrogen limitation, and for all conditions tested, labeling intensity was from 600% to 3600% brighter with the MAb than with the rRNA probe. Thus, it is clear that significant levels of variability in labeling intensity can be expected with both probe types because of the influence of environmental conditions and growth stage on cellular biochemistry, cell size,rRNA levels, and the number or accessibility of cell surface proteins. Of the two probes tested, the rRNA probe was the most variable, suggesting that in automated, whole-cell assays, it can be used only in a semiquantitative manner. For manual counts, the human eye will likely accommodate the labeling differences. The MAb probe was less variable, and thus should be amenable to both manual and automated counts. 相似文献
14.
Christopher D. Hewes B. Greg Mitchell Tiffany A. Moisan Maria Vernet Freda M. H. Reid 《Journal of phycology》1998,34(6):945-951
The absorbance and fluorescence emission spectra for three species of Dinophysis, D. caudata Saville-Kent, D. fortii Pavillard, and D. acuminata Claparède et Lachmann, were obtained through an in vivo microanalytical technique using a new type of transparent filter. The pigment signatures of these Dinophysis species were compared to those of Synechococcus Nägeli, a cryptophyte, and two wild rhodophytes, as well as those of another dinoflagellate, a diatom, and a chlorophyte. Phycobilins are not considered a native protein group for dinoflagellates, yet the absorption and fluorescence properties of the three Dinophysis species were demonstrated to closely resemble phycobilins and chlorophylls of Rhodomonas Karsten (Cryptophyceae). Analyses of Dinophysis species using epifluorescence microscopy found no additional nucleus or nuclear remnant as would be contributed by an endosymbiont. 相似文献
15.
Keith R. Roberts Mark A. Farmer Robin M. Schneider Julie E. Lemoine 《Journal of phycology》1988,24(4):544-553
The sub-thecal microtubular cytoskeleton of Amphidinium rhynchocephalum Anissimowa was investigated using indirect immunofluorescence microscopy and transmission electron microscopy. The majority of sub-thecal microtubules are longitudinally oriented and radiate from one of two sub-thecal transverse microtubular bands that lie adjacent to the anterior and posterior edge of the cingulum.Both transverse bands consist of 3–5 microtubules and are loop shaped with one end adjacent to the cell's right edge of the sulcus and the other end adjacent to the fibrous ventral ridge. The posterior transverse microtubular band (PTB) defines the posterior edge of the cingulum and gives rise to numerous posteriorly directed longitudinal microtubular bundles that consist of 1–3 microtubules per bundle. These bundles end at the posterior end of the cell. The PTB also gives rise to the cingular longitudinal microtubules that underlie the cingular groove and terminate at the anterior transverse microtubular band (ATB). The ATB defines the anterior edge of the cingulum and loops around the base of the epicone. This band gives rise to anteriorly directed longitudinal microtubular bundles that terminate in the small epicone of the cell. The longitudinal microtubular root of the flagellar apparatus is directed posteriorly and lies immediately beneath the theca but is distinct from the subthecal microtubule system. A narrow fibrous ridge is ventrally located to the cell's left between the exit apertures of the transverse and longitudinal flagella. In this position, the ventral ridge lies between and also connects with the anterior and posterior transverse microtubular bands. The ventral ridge is also associated with three microtubules that are distinct from other cytoskeletal microtubules. Our results demonstrate that the majority of sub-thecal microtubules originate from one of two microtubular bands associated with the cingulum. The possible role of the fibrous ventral ridge and its associated microtubules is also discussed. 相似文献
16.
Red blooms of snow algae consisting almost exclusively of large spherical red cells of Chlamydomonas nivalis (Bauer) Wille are widespread during the summer in the Beartooth Mountains in Montana and Wyoming. Field studies designed to examine the effects of temperature, light, and water potential on algal activity were performed with natural populations using photosynthetic 14C-HCO3- or 14CO2 incorporation as a measure of activity. The algae photo-synthesized optimally at 5.4 × 104 lx, but were not inhibited by increased light intensity up to 8.6 × 104 lx, the maximum observed in the field. Photosynthesis was sensitive to a reduction in water potential, and since low water potentials develop in snow at temperatures below 0 C, it is unlikely that significant algal activity occurs at the sub-0 temperatures which occur throughout winter. Photosynthesis was much lower following melting of the snow, but this was probably due to decreased diffusion of CO2. The optimal temperatures varied considerably among the different algal populations. Most samples photo-synthesized optimally at 10 or 20 C but retained substantial activity at temperatures as low as 0 or -3 C. Exceptional samples photosynthesized optimally at 0 or -3 C. It is proposed that the varied temperature responses reflect the presence of different temperature strains. Taken together, the data suggest that development of the snow algae can occur only during the summer months. 相似文献
17.
Susan I. Blackburn Gustaaf M. Hallegraeff Christopher J. Bolch 《Journal of phycology》1989,25(3):577-590
The toxic, chain-forming dinoflagellate Gymnodinium catenatum Graham was cultured from vegetative cells and benthic resting cysts isolated from estuarine waters in Tasmania, Australia. Rapidly dividing, log phase cultures formed long chains of up to 64 cells whereas stationary phase cultures were composed primarily of single cells (23-41 pm long, 27-36 pm wide). Vegetative growth (mean doubling time 3-4 days) was optimal at temperatures from 14.5-20° C, salinities of 23-34% and light irradiances of 50-300 μE·m?2·s?1. The sexual life cycle of G. catenatum was easily induced in a nutrient-deficient medium, provided compatible opposite mating types were combined (heterothallism). Gamete fusion produced a large (59-73 μm long, 50-59 μm wide) biconical, posteriorly biflagellate planozygote (double longitudinal flagellum) which after several days lost one longitudinal flagellum and gradually became subspherical in shape. This older planozygote stage persisted for up to two weeks before encysting into a round, brown resting cyst (42-52 μm diam; hypnozygote) with microreticulate surface ornamentation. Resting cysts germinated after a dormancy period as short as two weeks under our culture conditions, resulting in a single, posteriorly biflagellate germling cell (planomeiocyte). This divided to form a chain of two cells, which subsequently re-established a vegetative population. Implications for the bloom dynamics of this toxic dinoflagellate, a causative organism of paralytic shellfish poisoning, are discussed. 相似文献
18.
Mireille Chinain Michel Germain Yoshihiko Sako Serge Pauillac Anne-Marie Legrand 《Journal of phycology》1997,33(1):36-43
Intraspecific variation among 19 isolates of the ciguatera-causing dinoflagellate Gambierdiscus toxicus Adachi & Fukuyo (Dinophyceae) collected from French Polynesia, New Caledonia, and the French West Indies was investigated by isozyme analysis. Comparison of their cell sizes and growth rates revealed that significant variation exists among these clones. Comparison of electrophoretic patterns for seven enzyme systems indicated that G. toxicus is comprised of numerous biochemically distinct strains. Isolates from Tubuai and Hao appeared to be the most distantly related. Tahitian strains of G. toxicus also showed a remarkably low degree of similarity with the Tubuai isolates. The latter, which were taken from the same locale in Tubuai, also exhibited highly heterogeneous electrophoretic Profiles when compared to each other, suggesting a multiclonal origin. The single isolate analyzed from the Atlantic Ocean was most closely related to Tahitian isolates, despite their geographic separation. Finally, no clear relationship was found between the electrophoretic profiles of these isolates and their capacity to produce ciguatoxic compounds . 相似文献
19.
Colette Galleron 《Journal of phycology》1976,12(1):69-73
Under improved conditions, Amphidinium carteri Hulburt can be obtained as dense cultures (5–9 × 105 cells · ml?1) 5 days after inoculation. The possible association of a marine bacterium with the alga is discussed. A method to synchronize this photosynthetic organism is described which is based on the endogenous rhythm of division and the effect of light-dark alternating periods. 相似文献
20.
Gert Hansen 《Journal of phycology》1993,29(4):486-499
I examined the heterotrophic non-armored dinoflaget-late Actiniscus pentasterias (Ehrenberg) Ehrenberg by light and electron microscopy. Actiniscus pentasterias contains an internal skeleton consisting of two star-like siliceous elements. Special emphasis is given to the flagellar apparatus, the nucleus, and a new type of extrusome, named a docidosome. A three dimensional model of the flagerllar apparatus includes a fibrous nuclear connnective, a posterior striated root, and a dorsal striated component of the longitudinal microtabular root. The nucleus is surrounded by a conspicuous fibrous lamina, also visible in the light microscope. The nuclear pores are situated in annulated invaginations of the nuclear envelope, increasing the nuclear surface area by 15–25%. The docidosomes are rod-shaped membrane-bound structures that terminate in a distinct proximal head. They show very complex substructure, consisting of an inner medulla with highly ordered paired ribbons and an outer cortex. 相似文献