首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activation of glycogen synthase in the perfused rat liver is defective in severely diabetic rats. In the present study, activation of glycogen synthase by glucose and increased incorporation of [14C]glucose into glycogen by insulin are defective in hepatocytes isolated from alloxan diabetic rats. Acute activation of glycogen synthase in hepatocytes isolated from diabetic rats was restored by treatment of the rats with insulin in vivo. Restoration of synthase activation was not achieved by incubation of hepatocytes in the presence of insulin in vitro for up to 12 h. When isolated hepatocytes from diabetic rats were placed in primary culture in a serum-free defined medium over a 3-day period, glycogen synthesis was partially restored by cortisol and triiodothyronine and dramatically increased by insulin. Concomitant with restoration of [14C]glycogen synthesis was an insulin-mediated increase in glycogen synthase I and synthase phosphatase activity. Restoration of regulation of glycogen synthesis in primary cultures of hepatocytes from diabetic rats by insulin required the presence of cortisol and triiodothyronine. Primary cultures of hepatocytes from normal rats did not require triiodothyronine for insulin to effect glycogenesis over a 3-day period. These data demonstrate that insulin acts in a chronic manner in concert with other hormones to control synthase phosphatase activity, an effect which may be influencing acute control of hepatic glycogen synthesis.  相似文献   

2.
Glycogen synthase (GS), a key regulatory enzyme in glycogen synthesis, is controlled by multisite phosphorylation and allosteric regulation and is activated by insulin. This study investigated changes in GS activity and expression in hepatocytes isolated from rats under altered nutritional and diabetic conditions. Experiments were carried out in healthy rats fed a chow diet, rats on high simple sugar (60% of energy from fructose and sucrose) or high fat (46% of energy from fat) diet, and in rats with streptozotocin induced diabetes. In the presence of insulin, activated GS activity (GS(I) form) was increased by 89% in hepatocytes isolated from healthy rats. The stimulatory effect of insulin on GS activity and expression was blunted by cycloheximide and actinomycin treatment. In rats fed a high simple sugar or high fat diet, insulin stimulation of GS(I) in isolated hepatocytes was impaired and GS expression was significantly lower in rats fed the high fat diet in comparison to controls. GLUT-2 protein expression was significantly lowered by both the high fat and high simple sugar diets. In hepatocytes isolated from diabetic rats, total GS activity (GS(T)) was lower than in hepatocytes from healthy animals. Insulin added to the incubation medium did not stimulate GS activity, demonstrating impaired sensitivity to insulin in diabetic rats. However, insulin administration significantly increased GS expression indicating that a defect in synthase phosphorylation may be responsible for impaired GS activity in the diabetic state. The results presented in this study further confirm that GS activity is affected by both dietary and hormonal factors which can be measured in a rat hepatocyte model.  相似文献   

3.
The flux through branched-chain alpha-ketoacid dehydrogenase and the activity of the branched-chain alpha-ketoacid dehydrogenase complex were measured in hepatocytes isolated from fed, starved and alloxan diabetic rats. The highest rate of branched-chain alpha-ketoacid oxidation was found in hepatocytes isolated from starved rats, slightly lower in those from fed rats, and significantly lower in diabetic hepatocytes. The amount of the active form of branched-chain alpha-ketoacid dehydrogenase was only slightly diminished in diabetic hepatocytes, whereas the flux through the dehydrogenase was inversely correlated with the rate of endogenous ketogenesis. The same was observed in hepatocytes isolated from starved rats when branched-chain alpha-ketoacid oxidation was measured in the presence of added oleate. In both cases the diminished flux through the dehydrogenase, restored by a short preincubation of hepatocytes with insulin, was paralleled by a decrease of fatty acid-derived ketogenesis. The significance of these findings is discussed in relation to the role of insulin in branched-chain alpha-ketoacid oxidation in liver of diabetic rats.  相似文献   

4.
Hepatic plasma membrane lactate transport was studied in isolated hepatocytes prepared from fed, starved, and streptozotocin diabetic rats. Carrier-mediated lactate entry was determined using the lactate transport inhibitors alpha-cyano-3-hydroxycinnamate and D-3-hydroxybutyrate and was significantly greater in hepatocytes from starved compared to fed rats and in hepatocytes from diabetic fed compared to fed rats. The saturable component of lactate entry which corresponds to carrier-mediated transport was higher in the starved than in the fed state with results from diabetic fed being intermediate between the two. Insulin treatment prevented the increment in carrier-mediated lactate transport observed in hepatocytes from diabetic fed rats. The data indicate that hepatic plasma membrane lactate transport is increased under conditions of starvation and diabetes mellitus. This may partly explain the increased gluconeogenic flux under these conditions.  相似文献   

5.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

6.
Apolipoprotein B (apo B) phosphorylation was examined in primary cultures of hepatocytes from control and nonketotic streptozotocin diabetic rats. Following a 5-h incubation with ortho[32P]phosphate, media lipoproteins (d less than 1.063 g/ml) were isolated, and delipidated apolipoproteins were separated by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis (SDS-PAGGE), and gels were heat fixed. Autoradiographic bands corresponding to high (apo BH) and low molecular weight apo B (apo BL) were observed in media lipoproteins isolated from control rats, and these bands were more prominent in media lipoproteins isolated from diabetic rats. Apo B-specific activity was estimated from aqueous alcohol-precipitated radioactivity and apo B monoclonal immunoassay of isolated media lipoproteins. In lipoproteins secreted by hepatocytes of diabetic rats, the calculated apo B specific activity was between 18- and 31-fold greater than that secreted by hepatocytes of control rats, consistent with the SDS-PAGGE gel data. The increase in secretory 32P-labeled apo B from hepatocytes of diabetic rats was due, at least in part, to an increase in labeled phospho-tyrosine as determined by phosphoamino acid analysis. These data demonstrate that apo BH may be secreted as a phosphorylated protein and that apo B phosphorylation occurs on tyrosine as well as serine residues.  相似文献   

7.
Biotransformation of amitriptyline (AMI) was studied at different intervals in freshly isolated hepatocytes from healthy or streptozocin-induced diabetic rats in order to investigate the influence of the diabetic state. Levels of free and conjugated AMI, demethylated and hydroxylated metabolites, were assessed by HPLC analysis. In hepatocytes isolated from diabetic rats, AMI was less completely metabolized and the demethylation reaction became more important than in non-diabetic rat hepatocytes. Although the proportions of hydroxylated metabolites decreased in diabetic rats, it always remained predominant. Furthermore, glucuronidation of metabolites was greater, especially for (Z)-10-hydroxynortriptyline in diabetic animals.  相似文献   

8.
1. Cytosolic and mitochondrial ATP and ADP concentrations of liver cells isolated from normal fed, starved and diabetic rats were determined. 2. The cytosolic ATP/ADP ratio was 6,9 and 10 in normal fed, starved and diabetic rats respectively. 3. The mitochondrial ATP/ADP ratio was 2 in normal and diabetic rats and 1.6 in starved rats. 4. Adenosine increased the cytosolic and lowered the mitochondrial ATP/ADP ratio, whereas atractyloside had the opposite effect. 5. Incubation of the hepatocytes with fructose, glycerol or sorbitol led to a fall in the ATP/ADP ratio in both the cytosolic and the mitochondrial compartment. 6. The interrelationship between the mitochondrial ATP/ADP ratio and the phosphorylation state of pyruvate dehydrogenase in intact cells was studied. 7. In hepatocytes isolated from fed rats an inverse correlation between the mitochondrial ATP/ADP ratio and the active form of pyruvate dehydrogenase (pyruvate dehydrogenase a) was demonstrable on loading with fructose, glycerol or sorbitol. 8. No such correlation was obtained with pyruvate or dihydroxyacetone. For pyruvate, this can be explained by inhibition of pyruvate dehydrogenase kinase. 9. Liver cells isolated from fed animals displayed pyruvate dehydrogenase a activity twice that found in vivo. Physiological values were obtained when the hepatocytes were incubated with albumin-oleate, which also yielded the highest mitochondrial ATP/ADP ratio.  相似文献   

9.
Gluconeogenesis and ketogenesis were studied in isolated hepatocytes obtained from normal and alloxan diabetic rats. Insulin treatment maintained near-normal blood glucose levels and caused an increase in glycogen deposition. The third day after insulin withdrawal the rats displayed a diabetic syndrome marked by progressive hyperglycemia and glycogen depletion. Net glucose production in liver cells isolated from alloxan diabetic rats progressively increased with time up to 72 hr after the last in vivo insulin injection. Maximal glucose production was observed at 72 hr with 10 mM alanine, lactate, pyruvate, or fructose. Glucose production decreased at 96 hr. The same pattern was observed with the incorporation of labeled bicarbonate into glucose. Ketogenesis in liver cells and hepatic lipid content also peaked at 72 hr.  相似文献   

10.
In the present work we demonstrate that insulin decreases the phenobarbital-induced activities of delta-aminolevulinic acid synthase and ferrochelatase in isolated hepatocytes from normal and experimental-diabetic rats. Insulin concentrations required to produce significant inhibition in diabetic hepatocytes were higher than in normal cells. Under similar experimental conditions, insulin decreased the basal activities of delta-aminolevulinic acid synthase and ferrochelatase in hepatocytes from normal rats; no inhibitory effect was observed on the basal activity of delta-aminolevulinic acid synthase in hepatocytes from diabetic rats. Cytochrome P-450 content of both normal and diabetic cells was not affected by insulin in absence or presence of phenobarbital. The inhibitory action of insulin was exerted even when effective concentrations of glucagon, dexamethasone, or 8-(p-chlorophenylthio)-cAMP were present.  相似文献   

11.
We have shown that a single dose of streptozotocin (STZ) (50 mg/kg body weight) injected into rats caused significant changes in some antioxidant enzyme activities, such as glutathione peroxidase, glutathione reductase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase activities, and acid-soluble sulfhydryl levels of the liver tissue with respect to the control rats. Furthermore, these alterations in the activities of the antioxidant enzymes were accompanied by significant changes in the ultrastructure of the liver tissue; mainly intercellular biliary canaliculi were distended and contained stagnant bile, swollen mitochondria in hepatocytes and disoriented and disintegrating cristae, dilatation of the rough endoplasmic reticulum (rER) with detachment of ribosomes, and dissociation of polysomes. Both diabetic and normal rats were treated with sodium selenite (5 micromol/kg/d, intra peritoneally) for 4 wk following 1 wk of diabetes induction. This treatment of diabetic rats improved significantly diabetes-induced alterations in liver antioxidant enzymes. Moreover, treating of diabetic rats with sodium selenite prevented primarily the variation in staining quality of hepatocytes nuclei, increased density and eosinophilia of the cytoplasm, focal sinusoidal dilatation and congestion, and increased numbers of mitochondria with different size and shape. In summary, treatment of diabetic rats with sodium selenite has beneficial effects on both antioxidant system and the ultrastructure of the liver tissue. These findings suggest that diabetes-induced oxidative stress can be responsible for the development of diabetic complications and antioxidant treatment can protect the target organs against diabetes.  相似文献   

12.
1. The effect of insulin on apolipoprotein (apo B) secretion was studied in 24 h recirculating liver perfusions of isolated normal, diabetic and insulin-treated diabetic rats. In single perfusions from each group apo B accumulated in the media in a linear fashion. 2 In perfusions of normal rat livers, when the medium contained insulin plus cortisol, apo B production was significantly inhibited (by 35.8%), demonstrating a hormone effect on apo B secretion. 3. In perfusions of diabetic-rat livers, apo B production was decreased to 11.8% of normal when the medium contained no hormones, and was not significantly changed by the addition of insulin plus cortisol to the medium, suggesting that the hormone effect on apo B secretion is missing in long-term hypoinsulinaemic states. 4. Treatment of diabetic rats with daily insulin injection restored apo B production and restored the effect of insulin plus cortisol in the medium to inhibit apo B secretion during perfusion. 5. Parallel studies of apo B secretion with insulin alone, cortisol alone and insulin plus cortisol in the medium were performed in primary cultures of hepatocytes to compare results from liver perfusions. 6. Apo B secretion by hepatocytes from normal, diabetic and treated-diabetic rats was inhibited (by 36.8%, 57.1% and 57.9% respectively) when insulin alone was added to the medium. 7. Insulin plus cortisol inhibited apo B secretion by hepatocytes from normal and treated diabetic rats (by 30.2% and 47.2% respectively), but failed to inhibit apo B secretion by hepatocytes from diabetic rats.  相似文献   

13.
Defective acute regulation of hepatic glycogen synthase by glucose and insulin, caused by severe insulin deficiency, can be corrected in adult rat hepatocytes in primary culture by inclusion of insulin, triiodothyronine, and cortisol in a chemically defined serum-free culture medium over a 3-day period (Miller, T. B., Jr., Garnache, A. K., Cruz, J., McPherson, R. K., and Wolleben, C. (1986) J. Biol. Chem. 261, 785-790). Using primary cultures of hepatocytes isolated from normal and diabetic rats in the same serum-free chemically defined medium, the present study addresses the effects of cycloheximide and actinomycin D on the chronic actions of insulin, triiodothyronine, and cortisol to facilitate the direct effects of glucose on the short-term activation of glycogen synthase. The short-term presence (1 h) of the protein synthesis blockers had no effect on acute activation of glycogen synthase by glucose in primary hepatocyte cultures from normal rats. Normal cells maintained in the presence of cycloheximide or actinomycin D for 2 and 3 days exhibited unimpaired responsiveness to glucose activation of synthase. The protein synthesis inhibitors were effective at blocking the restoration of glucose activation of synthase in diabetic cells in media which restored the activation in their absence. Restoration of glycogen synthase phosphatase activity by insulin, triiodothyronine, and cortisol in primary cultures of diabetic hepatocytes was also blocked by cycloheximide or actinomycin D. These data clearly demonstrate that restoration of acute glycogen synthase activation by glucose and restoration of glycogen synthase phosphatase activity in primary cultures of hepatocytes from adult diabetic rats are dependent upon the synthesis of new protein.  相似文献   

14.
15.
Cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol-treated rats were used to investigate the change of lipid metabolism induced by administration of 17 alpha-ethynylestradiol. Treatment with 17 alpha-ethynylestradiol caused a decrease of rat plasma lipids (free cholesterol, cholesterol ester, triacylglycerol and phosphatidylcholine). No difference in the ability of urea nitrogen synthesis could be demonstrated between cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol-treated rats and propylene glycol-treated rats (control). Total cholesterol and cholesterol ester contents of cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol-treated rats were increased in comparison with those of the control. Triacylglycerol content of cultured hepatocytes was not affected by 17 alpha-ethynylestradiol treatment. There was no difference in the composition of lipid content between liver tissues and cultured hepatocytes. These results suggest that hepatocytes isolated from livers maintain the character of livers treated with 17 alpha-ethynylestradiol or livers treated with propylene glycol. Free cholesterol and cholesterol ester synthesis from [14C]acetic acid by cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol-treated rats were decreased to about 30% of the control. Triacylglycerol and polar lipid (phospholipid) synthesis from [14C]acetic acid were not affected by 17 alpha-ethynylestradiol treatment. Microsomal hydroxymethylglutaryl-CoA reductase activity of rat liver treated with 17 alpha-ethynylestradiol was decreased to about 50% of control. The secretions of free cholesterol, cholesterol ester, triacylglycerol, phosphatidylcholine, apolipoprotein BL and BS by cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol treated rats were not decreased when compared with the control. Because lipid and apolipoprotein secretions from cultured hepatocytes treated with 17 alpha-ethynylestradiol were not decreased and cholesterol contents of liver tissues and cultured hepatocytes treated with 17 alpha-ethynylestradiol were increased and hepatic microsomal hydroxymethylglutaryl-CoA reductase activity was decreased by 17 alpha-ethynylestradiol treatment, it is suggested that the liver plays an important role in hypolipidemia induced by 17 alpha-ethynylestradiol by increasing the plasma lipid uptake mediated by an increased amount of lipoprotein receptors of liver membranes.  相似文献   

16.
17.
Expression of hepatic mitochondrial carbonic anhydrase V   总被引:1,自引:0,他引:1  
We have raised specific (rabbit anti-rat) polyclonal antibodies to hepatic mitochondrial carbonic anhydrase V (CA V) and used them to assay the amounts of protein expressed in liver mitochondria isolated from term-foetal, control or diabetic adult rats and in perivenous and periportal rat hepatocytes. The levels of CA V expressed in mitochondria isolated from the livers of adult male and female rats are similar and increase (about 2-fold) in mitochondria from adult diabetic rats when compared to those isolated from the livers of control rats. The level of enzyme in adult liver was higher than in the livers of term-foetal rats. CA V is expressed in both perivenous and periportal hepatocytes, but the level of expression is greater (approx. 40%) in perivenous cells. The implications and significance of these findings are discussed with reference to the roles and properties of the other carbonic anhydrase isoenzymes and the metabolic function of the mitochondrial isoenzyme.  相似文献   

18.
This study correlates the morphological and biochemical events during the accumulation of hepatic lipids in diabetic rats in response to insulin treatment and a high-carbohydrate, fat-free diet. Alloxan-diabetic rats were fed a high-carbohydrate, fat-free diet and treated with insulin for 12, 36, or 60 hr or 4.5 or 6.5 days. Samples of livers were obtained for determination of malic enzyme activity and the histochemical demonstration of lipids. An increased accumulation of hepatic lipids, although delayed, was observed following insulin treatment of diabetic rats fed the special diet. Small lipid droplets were visible after 36 hr of treatment, which later increased and coalesced into larger droplets present in all hepatocytes. Maximal accumulation was observed at 4.5 days of treatment. These changes were paralleled by an increase in the activity of hepatic malic enzyme. By 6.5 days of treatment, the lipid content of the hepatocytes had decreased and a periportal pattern was discernible. In contrast, malic enzyme activity continued to increase through 6.5 days of treatment. By comparison, no hepatic lipid accumulation occurred in regular chow-fed diabetic rats receiving insulin treatment or in diabetic rats placed on the special diet alone. These results suggest that the combination of insulin treatment and a high-carbohydrate, fat-free diet caused an imbalance in the production and mobilization of hepatic lipids.  相似文献   

19.
Zucker diabetic fatty rats develop type 2 diabetes concomitantly with peripheral insulin resistance. Hepatocytes from these rats and their control lean counterparts have been cultured, and a number of key parameters of glucose metabolism have been determined. Glucokinase activity was 4.5-fold lower in hepatocytes from diabetic rats than in hepatocytes from healthy ones. In contrast, hexokinase activity was about 2-fold higher in hepatocytes from diabetic animals than in healthy ones. Glucose-6-phosphatase activity was not significantly different. Despite the altered ratios of glucokinase to hexokinase activity, intracellular glucose 6-phosphate concentrations were similar in the two types of cells when they where incubated with 1-25 mM glucose. However, glycogen levels and glycogen synthase activity ratio were lower in hepatocytes from diabetic animals. Total pyruvate kinase activity and its activity ratio as well as fructose 2,6-bisphosphate concentration and lactate production were also lower in cells from diabetic animals. All of these data indicate that glucose metabolism is clearly impaired in hepatocytes from Zucker diabetic fatty rats. Glucokinase overexpression using adenovirus restored glucose metabolism in diabetic hepatocytes. In glucokinase-overexpressing cells, glucose 6-phosphate levels increased. Moreover, glycogen deposition was greatly enhanced due to the activation of glycogen synthase. Pyruvate kinase was also activated, and fructose-2,6-bisphosphate concentration and lactate production were increased in glucokinase-overexpressing diabetic hepatocytes. Overexpression of hexokinase I did not increase glycogen deposition. In conclusion, hepatocytes from Zucker diabetic fatty rats showed depressed glycogen and glycolytic metabolism, but glucokinase overexpression improved their glucose utilization and storage.  相似文献   

20.
Effect of the antidiabetic agent pioglitazone on the insulin-mediated activation of protein phosphatase-1 was examined in diabetic hepatocytes. Streptozotocin-induced diabetes in Sprague Dawley rats caused a significant decrease in the activation of glycogen synthase in hepatocytes isolated from these animals. There was an inverse correlation between the in vivo hyperglycemic condition and the in vitro activation of glycogen synthase in liver cells (r = 0.93, p > 0.001). Long term incubation of diabetic hepatocytes with insulin and dexamethasone caused significant (p > 0.001) improvement in the activation of glycogen synthase activation. When incubated along with hormones, pioglitazone enhanced their action (p > 0.05-0.01). Diabetic hepatocytes were also characterized by 50% decrease in the activity of protein phosphatase-1, the enzyme which dephosphorylates and activates glycogen synthase. Pioglitazone potentiated the acute stimulatory effect of insulin on protein phosphatase-1 in normal hepatocytes but not in diabetic hepatocytes. Long term incubation of diabetic hepatocytes with insulin ameliorated the decrease in the protein phosphatase -1 activity in these cells. This stimulatory long-term effect of insulin was significantly (p > 0.05) enhanced by the antidiabetic agent pioglitazone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号