首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L F Lu  R R Fiscus 《Life sciences》1999,64(16):1373-1381
Interleukin-1beta (IL-1beta) can be synthesized by macrophages, endothelial cells and vascular smooth muscle cells when stimulated by bacterial lipopolysaccharide (endotoxin) during septic shock. The IL-1beta levels in the blood vessel wall are also elevated in atherosclerosis. IL-1beta can cause induction of inducible nitric oxide synthase (iNOS) expression in vascular smooth muscle cells and produce vasorelaxation, hypotension and ultimately tissue damage. We studied the depressions of vascular smooth muscle contractions at 3 hours after exposure to IL-1beta in different positions of rat thoracic aorta. The data show that the aortic rings from the cranial end of rat thoracic aorta had little response to IL-1beta (0.5 and 1.0 ng/ml) while those from the caudal end of thoracic aorta had larger depressant response. S-methylisothiourea sulfate (SMT), an iNOS inhibitor, completely blocked the depression of contraction caused by IL-1beta in intact aortic rings. If the endothelium was removed from the aortic rings before exposure to IL-1beta, all rings from different parts of the thoracic aorta showed an equal amount of vasodepression. Thus, the difference in the depressant response of IL-1beta in different portions of thoracic aorta is endothelium-dependent and involves induction of NOS.  相似文献   

2.
The aorta is a magistral artery, which has been traditionally looked upon as a vessel whose properties are invariable throughout its length. However, in the most recent decade, there have been accumulated data that provide evidence that different aorta sections arise from different embryonic origins and that the population of smooth muscle cells making up the vessel’s wall is, consequently, heterogenic. Tracing the fate of smooth muscle cells, the basic components of the vessel, with the aid of genetic marking methods revealed that the cells’ response to various factors is largely determined by the embryonic origin of a certain cell population. However, functional differences between the smooth muscle cells making up different aorta sections remain poorly understood. The aim of the current work was to compare the functional characteristics of the populations of aortic wall smooth muscle cells obtained from the aorta sections differing by their embryonic origin. Towards this end, we obtained smooth muscle cell cultures from the three aorta sections of linear rats, namely, the neural crest derived ascending thoracic aorta, the somites derived descending thoracic aorta, and splanchnic mesoderm derived abdominal aorta. Using immunocytochemistry and Western blotting, the cells from the different regions of aorta were compared on the basis of smooth muscle actin, vimentin, and SM22 content in them. Cell proliferation rate was estimated using the growth curves method. We have demonstrated that the three smooth muscle cell populations arising from different embryonic origins differ in their morphological characteristics as well as by smooth muscle actin and SM22 content. We have shown that smooth muscle cells from the ascending aorta proliferate more actively than the corresponding cells from the descending thoracic aorta. Thus, the functional properties of the populations of rat aortic smooth muscle cells are different and depend on the embryonic origin of the aorta section from which they were obtained.  相似文献   

3.
Several in vitro studies have previously demonstrated that the addition of TGF-β to aortic smooth muscle cells or skin fibroblasts stimulates elastin synthesis. It is not clear however whether, in vivo, TGF-β participates in the regulation of elastin synthesis, especially in physiological conditions. The aim of our study was to explore the localization of elastin mRNA and TGF-β1 in the rat thoracic aorta (an elastic artery) and caudal artery (a muscular artery). Elastin mRNA was localized by in situ hybridization and quantified using Northern blot analysis. TGF-β1 was detected using immunohistochemistry. The study was carried out as a function of age (rats of 3, 10, 20, and 30 months). We observed that TGF-β1 immunoreactivity is present predominantly, but not exclusively, at the sites of elastin synthesis as determined by elastin mRNA detection: in smooth muscle cells in the aorta and in endothelial cells in the caudal artery. The ability of exogenously added TGF-β1 (0.001–10 ng/ml) to modulate the steady-state levels of elastin mRNA in primary cultures of endothelial cells, smooth muscle cells, and fibroblasts isolated from the thoracic aorta was also studied. At the highest concentration used, elastin mRNA levels increased 5-fold in endothelial cells and 11-fold in smooth muscle cells. The demonstration that TGF-β1 immunoreactivity is present at the sites of elastin synthesis in the thoracic aorta and in the caudal artery and the observation that TGF-β1 induces an increase in elastin mRNA levels in cultured endothelial cells and smooth muscle cells suggest that TGF-β1 may be implicated, at least in part, in the physiological regulation of elastin gene expression.  相似文献   

4.
To separate the role of ANG II from pressure in hypertrophy of the vascular wall in one-kidney, one-clip (1K1C) hypertension, experimental and sham-operated rats were given the AT(1)-receptor antagonist losartan (20 mg x kg(-1) x day(-1)) or tap water for 14 days. Mean arterial pressure was elevated in both experimental groups compared with controls. Rats were anesthetized with pentobarbital sodium, and the thoracic aorta and carotid, small mesenteric, and external spermatic arteries were harvested and embedded in paraffin. Tissue sections were used for morphological analysis, immunohistochemistry for 5-bromo-2'-deoxyuridine (BrdU) and platelet-derived growth factor (PDGF)-AA, stereological measurements, and in situ hybridization with a (35)S-labeled riboprobe for PDGF-A mRNA. Elevated cross-sectional areas of thoracic, carotid, and small mesenteric artery in 1K1C rats were not reduced by losartan. The internal diameter of the external spermatic artery and microvascular density of the cremaster muscle were reduced in 1K1C rats. The number of BrdU-positive nuclei per cross section did not differ between 1K1C and control arteries. PDGF-A mRNA was elevated in the arterial walls of 1K1C rats compared with controls and was hardly changed by losartan. PDGF-A protein stained strongly in the media of 1K1C arteries and was not inhibited by losartan; it appeared in the adventitia of all aortas and carotid arteries. These observations demonstrate that effects of ANG II mediated through the AT(1) receptor are not necessary for hypertrophy of the vascular wall during 1K1C hypertension or expression of PDGF-A.  相似文献   

5.
6.
Species dependence of the zero-stress state of aorta: pig versus rat.   总被引:12,自引:0,他引:12  
The zero-stress state of an aorta can be characterized by the angle with which each segment of the vessel opens up when it is cut radially. The opening angle varies with the region of the aorta: significantly with respect to the axial location, less significantly with respect to polar angle of the radial cut. Both pig and rat aortas have large opening angles in the neighborhood of 130 deg in the aortic arch region. In the thoracic region, the species difference is evident. The opening angle of the pig aorta in the middle thoracic region is rather constant in the neighborhood of 60 deg. The opening angle of the rat aorta in the thoracic region varies considerably, decreasing to 10 deg at the lower end of the thoracic region. In the abdominal region the opening angle of the pig increases from 60 to about 80 deg, that of the rat increases from about 10 to 90 deg. The potassium ion has effect on vascular smooth muscle, but has little effect on the opening angle. This suggests that the opening angle is not sensitive to smooth muscle contraction, similar to a previously known result that the opening angle is not affected by papaverine. The vessel wall thickness and vessel diameter were measured. It is shown that the ratio of the wall thickness to diameter of the pig is considerably larger than that of the rat throughout the aorta.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
10.
Pulmonary arteries (PA) are resistant to the vasodilator effects of extracellular acidosis in systemic vessels; the mechanism underlying this difference between systemic and pulmonary circulations has not been elucidated. We hypothesized that RhoA/Rho-kinase-mediated Ca2+ sensitization pathway played a greater role in tension development in pulmonary than in systemic vascular smooth muscle and that this pathway was insensitive to acidosis. In arterial rings contracted with the alpha1-agonist phenylephrine (PE), the Rho-kinase inhibitor Y-27632 (< or =3 microM) induced greater relaxation in precontracted PA rings than in aortic rings. In PA rings stimulated by PE, the activation of RhoA was greater than in aorta. Normocapnic acidosis (NA) induced a smaller relaxation in precontracted PA than in aorta. However, in the presence of nifedipine and thapsigargin, when PE-induced contraction was predominantly mediated by Rho-kinase, the relaxant effect of NA was reduced and similar in both vessel types. Furthermore, in the presence of Y-27632, NA induced a greater relaxation in both PA and aorta, which was similar in both vessels. Finally, in alpha-toxin-permeabilized smooth muscle, PE-induced contraction at constant Ca2+ activity was inhibited by Y-27632 and unaffected by acidosis. These results indicate that Ca2+ sensitization induced by the RhoA/Rho-kinase pathway played a greater role in agonist-induced vascular smooth muscle contraction in PA than in aorta and that tension mediated by this pathway was insensitive to acidosis. The predominant role of the RhoA/Rho-kinase pathway in the pulmonary vasculature may account for the resistance of this circulation to the vasodilator effect of acidosis observed in the systemic circulation.  相似文献   

11.
12.
In vitro PGI2 synthesis by aortic strips obtained from thoracic aorta of rabbits fed a high cholesterol diet was examined and compared with that of control rabbits fed a normal diet. In this report, the amounts of PGI2 produced were shown as 6-keto-PGF1 alpha per microgram of aortic tissue DNA instead of per mg wet weight. We also investigated PGI2 synthesis by cultured smooth muscle cells (SMC) obtained from atherosclerotic intima. Basal PGI2 production by aortic strips from atherosclerotic rabbit aorta was significantly augmented compared with that of controls. Arachidonic acid (AA)-induced PGI2 production by atherosclerotic aorta was also significantly higher than that of controls. PGI2 producing capacities of intimal and medial layers, separated from atherosclerotic aorta, were examined and the intimal layer was found to elicit a significantly greater PGI2 production than the medial layer. Furthermore, cultured intimal SMC obtained from atherosclerotic rabbit aorta produced a greater amount of PGI2 than medial SMC from normal rabbit aorta at various cultured conditions. These results suggest that the possibility of enhanced PGI2 production by atherosclerotic aorta may well be considered as a defence mechanism of the vessel wall against damaging stimuli.  相似文献   

13.
14.
15.
After injury to the blood vessel wall, vascular smooth muscle cells (SMC) synthesize interleukin (IL)-1 and inducible nitric oxide (NO) synthase (iNOS). The present study tested whether endogenous production of IL-1 alpha stimulates iNOS expression in vascular SMC, and assessed whether IL-1 alpha exerts autocrine effects on the cells producing IL-1 alpha or juxtacrine effects on cells that contact the IL-1 alpha producing cells. Rat aortic SMC were transiently transfected with expression plasmids encoding either IL-1 alpha precursor, which localizes to the plasma membrane, or mature IL-1 alpha, which remains cytosolic. iNOS mRNA levels, determined by RT-PCR, and production of nitrite, a stable oxidation product of NO, were markedly elevated in SMC overexpressing IL-1 alpha precursor, and modestly elevated in SMC overexpressing mature IL-1 alpha, relative to SMC transfected with vector alone. Exposure to exogenous IL-1 beta or TNF-alpha further stimulated iNOS gene expression in SMC producing IL-1 alpha; low levels of IL-1 beta (20 pg/ml) were effective in SMC transfected with IL-1 alpha precursor plasmid, whereas SMC transfected with mature IL-1 alpha plasmid or vector alone required higher concentrations of IL-1 beta (200 and 2,000 pg/ml, respectively). The increases in iNOS mRNA levels and NO production in SMC overexpressing IL-1 alpha precursor were prevented by exogenous IL-1 receptor antagonist, suggesting that these effects were mediated by the type I IL-1 receptor. Immunostaining studies indicated that IL-1 alpha precursor stimulates iNOS gene expression via cell-cell contact. Expression of iNOS was enhanced in cells that were in contact with a cell overexpressing IL-1 alpha precursor (identified by coexpression of green fluorescent protein), and in cells that were overexpressing IL-1 alpha themselves, but only when the cell contacted another cell. Together these results indicate that IL-1 alpha precursor acts by cell-cell contact as an autocrine and juxtacrine enhancer of iNOS gene expression, inducing moderate iNOS expression on its own, and markedly augmenting the responsiveness of rat aortic SMC to exogenous cytokines.  相似文献   

16.
The Na(+)-K(+)-ATPase (NKA) is a transmembrane protein that sets and maintains the electrochemical gradient by extruding three Na(+) in exchange for two K(+). An important physiological role proposed for vascular smooth muscle NKA is the regulation of blood pressure via modulation of vascular smooth muscle contractility (5). To investigate the relations between the level of NKA in smooth muscle and blood pressure, we developed mice carrying a transgene for either the NKA alpha(1)- or alpha(2)-isoform (alpha(1 sm+) or alpha(2 sm+) mice) driven by the smooth muscle-specific alpha-actin promoter SMP8. Interestingly, both alpha-isoforms, the one contained in the transgene and the one not contained, were increased to a similar degree at both protein and mRNA levels. The total alpha-isoform protein was increased from 1.5-fold (alpha(1 sm+) mice) to 7-fold (alpha(2 sm+) mice). The increase in total NKA alpha-isoform protein was accompanied by a 2.5-fold increase in NKA activity in alpha(2 sm+) gastric antrum. Immunocytochemistry of the alpha(1)- and alpha(2)-isoforms in alpha(2 sm+) aortic smooth muscle cells indicated that alpha-isoform distributions were similar to those shown in wild-type cells. alpha(2 sm+) Mice (high expression) were hypotensive (109.9 +/- 1.6 vs. 121.3 +/- 1.4 mmHg; n = 13 and 11, respectively), whereas alpha(1 sm+) mice (low expression) were normotensive (122.7 +/- 2.5 vs. 117.4 +/- 2.3; n = 11 or 12). alpha(2 sm+) Aorta, but not alpha(1 sm+) aorta, relaxed faster from a KCl-induced contraction than wild-type aorta. Our results show that smooth muscle displays unique coordinate expression of the alpha-isoforms. Increasing smooth muscle NKA decreases blood pressure and is dependent on the degree of increased alpha-isoform expression.  相似文献   

17.
Recent evidence supports a role of Toll-like receptor (TLR) signaling in the development of atherosclerotic lesions. In this study, we tested whether TLR4 signaling promotes a proinflammatory phenotype in human and mouse arterial smooth muscle cells (SMC), characterized by increased cytokine and chemokine synthesis and increased TLR expression. Human arterial SMC were found to express mRNA encoding TLR4 and the TLR4-associated molecules MD-2 and CD14 but not TLR2 mRNA. Mouse aortic SMC, on the other hand, expressed both TLR2 and TLR4 mRNA constitutively. Human SMC derived from the coronary artery, but not those from the pulmonary artery, were found to express cell surface-associated CD14. Low concentrations (ng/ml) of Escherichia coli LPS, the prototypical TLR4 agonist, markedly stimulated extracellular regulated kinase 1/2 (ERK1/2) activity, induced release of monocyte-chemoattractant protein-1 (MCP-1) and interleukin (IL)-6, and stimulated IL-1alpha expression in human aortic SMC, and exogenous CD14 enhanced these effects. Expression of a dominant negative form of TLR4 in human SMC attenuated LPS-induced ERK1/2 and MCP-1 release. LPS was a potent inducer of NF-kappaB activity, ERK1/2 phosphorylation, MCP-1 release, and TLR2 mRNA expression in wild-type mice but not in TLR4-signaling deficient mouse aortic SMC. These studies show that TLR4 signaling promotes a proinflammatory phenotype in vascular smooth muscle cells (VSMC) and suggest that VSMC may potentially play an active role in vascular inflammation via the release of chemokines, proinflammatory cytokines, and increased expression of TLR2.  相似文献   

18.
Multiple clinical studies show that arterial stiffness, measured as pulse wave velocity (PWV), precedes hypertension and is an independent predictor of hypertension end organ diseases including stroke, cardiovascular disease and chronic kidney disease. Risk factor studies for arterial stiffness implicate age, hypertension and sodium. However, causal mechanisms linking risk factor to arterial stiffness remain to be elucidated. Here, we studied the causal relationship of arterial stiffness and hypertension in the Na-induced, stroke-prone Dahl salt-sensitive (S) hypertensive rat model, and analyzed putative molecular mechanisms. Stroke-prone and non-stroke-prone male and female rats were studied at 3- and 6-weeks of age for arterial stiffness (PWV, strain), blood pressure, vessel wall histology, and gene expression changes. Studies showed that increased left carotid and aortic arterial stiffness preceded hypertension, pulse pressure widening, and structural wall changes at the 6-week time-point. Instead, differential gene induction was detected implicating molecular-functional changes in extracellular matrix (ECM) structural constituents, modifiers, cell adhesion, and matricellular proteins, as well as in endothelial function, apoptosis balance, and epigenetic regulators. Immunostaining testing histone modifiers Ep300, HDAC3, and PRMT5 levels confirmed carotid artery-upregulation in all three layers: endothelial, smooth muscle and adventitial cells. Our study recapitulates observations in humans that given salt-sensitivity, increased Na-intake induced arterial stiffness before hypertension, increased pulse pressure, and structural vessel wall changes. Differential gene expression changes associated with arterial stiffness suggest a molecular mechanism linking sodium to full-vessel wall response affecting gene-networks involved in vascular ECM structure-function, apoptosis balance, and epigenetic regulation.  相似文献   

19.
Our objective in this study was to evaluate the relative amount of smooth muscle cells in the medial layer of various rabbit arteries. The fixation of smooth muscle cells in the arterial wall is difficult and the differential effect of glutaraldehyde (GA) and fixative vehicle on cell ultrastructure in different tissues is controversial. We compared the effect of various concentrations of the vehicle and glutaraldehyde (osmolarity ranges for total fixative, 350-1030 mOsm) on the arterial wall ultrastructure. We found that a 600 mOsm GA solution (isotonic vehicle; 2.5% GA) adequately preserves arterial wall structures. The relative amount of smooth muscle cells in the media differed in various segments along the arterial tree. It ranged from 35% (thoracic aorta) to 74% (tibial artery). The importance of weighting the contractile response of different arteries in vitro to their relative smooth muscle cell content is discussed.  相似文献   

20.
Neuronal nicotinic acetylcholine receptors (nAChRs) are hetero- and homopentamers built up by nine different alpha-subunits and three different beta-subunits. The subtype composition within the receptor determines ligand specificity, affinity and cation permeability. In this study we focused on the distribution of the ligand binding alpha-subunits in the rat arterial system by means of RT-PCR and immunohistochemistry. Subtypes alpha3, alpha5, alpha7 and alpha10 were found to be expressed by endothelial cells, suggesting that they are equipped both with calcium-preferring (alpha7 homopentamers) and monovalent cation-preferring (heteropentamers containing alpha3- and alpha5-subunits) nAChR channels. All alpha-subtypes except alpha9 were expressed by vascular smooth muscle cells with a highly specific distribution pattern along the vascular tree. While every alpha-subunit except alpha9 was detected in the thoracic aorta, intrapulmonary arterial branches contained only alpha7 immunoreactivity, and other vascular beds held intermediate positions with respect to the extent of alpha-subunit expression. Current knowledge does not allow to correlate these distribution patterns to specific functions, but it can be anticipated that at least some components of nAChR-mediated signalling in the arterial wall are highly specific for individual arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号